
MATLAB®

The Language of Technical Computing

Computation

Visualization

Programming

Data Analysis
Version 7

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Data Analysis

© COPYRIGHT 2005–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2005 Online only New for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.2 (Release 2006a)
September 2006 Online only Revised for Version 7.3 (Release 2006b)

Contents

Preparing Data for Analysis

1
Using MATLAB for Data Analysis 1-3

Calculations on Vectors and Matrices 1-4
MATLAB GUIs for Data Analysis . 1-4
Related Toolboxes . 1-5

Importing and Exporting Data . 1-7

Plotting Data . 1-8
Example — Loading and Plotting Data 1-8

Removing and Interpolating Missing Values 1-10
Representing Missing Data Values 1-10
Calculating with NaNs . 1-10
Removing NaNs from the Data . 1-11
Interpolating Missing Data . 1-12

Removing Outliers . 1-13

Filtering Data . 1-15
Filter Function . 1-15
Example 1 — Moving-Average Filter 1-16
Example 2 — Discrete Filter . 1-17

Detrending Data . 1-20
Example — Removing Linear Trends from the Data 1-20

Finite Differences . 1-24

Descriptive Statistics . 1-25
Functions for Calculating Descriptive Statistics 1-25
Example — Using MATLAB Data Statistics 1-28

v

Data Fitting Using Linear Regression

2
Introduction . 2-2

Residuals and Goodness of Fit . 2-2
When to Use the Curve Fitting Toolbox 2-3

Linear Correlation Analysis . 2-4
Covariance . 2-4
Correlation Coefficients . 2-6

Using MATLAB Basic Fitting . 2-8
What Is MATLAB Basic Fitting? . 2-8
Sorting Data to Improve Performance 2-8
Opening MATLAB Basic Fitting . 2-9
Example — Using MATLAB Basic Fitting 2-10

Data Fitting Using MATLAB Functions 2-22
MATLAB Functions for Polynomial Models 2-22
Linear Model with Nonpolynomial Terms 2-26
Multiple Regression . 2-28

Example — Data Fitting Using MATLAB Functions . . . 2-30
Calculating Correlation Coefficients 2-31
Fitting a Polynomial to the Data . 2-32
Plot and Calculate Confidence Bounds 2-34

Fourier Analysis

3
Introduction . 3-2

Function Summary . 3-3

Calculating Fourier Transforms . 3-4
Example — Calculating the FFT of a Column Vector 3-5

vi Contents

Example — Using FFT to Calculate Sunspot
Periodicity . 3-7

Magnitude and Phase of Transformed Data 3-11

FFT Length Versus Performance . 3-13

Using Time-Series Objects and Methods

4
Introduction . 4-2

Time-Series Data Sample . 4-3

Example — Using Time-Series Objects and Methods . . 4-6
Creating timeseries Objects . 4-6
Viewing timeseries Objects . 4-8
Modifying timeseries Units and Interpolation Method 4-11
Defining Events . 4-12
Creating tscollection Objects . 4-12
Resampling a tscollection Object . 4-14
Adding a Data Sample to a tscollection Object 4-15
Removing and Interpolating Missing Data 4-16
Removing a timeseries from a tscollection 4-18
Changing a Numerical Time Vector to Date Strings 4-18
Plotting tscollection Members . 4-19

timeseries Constructor . 4-21
Time Vector Format . 4-21
timeseries Constructor Syntax . 4-22
timeseries Properties . 4-24

timeseries Methods . 4-31
General Methods . 4-31
Data and Time Manipulation Methods 4-32
Event Methods . 4-33
Arithmetic Operation Methods . 4-34
Statistical Methods . 4-35

vii

tscollection Constructor . 4-36
tscollection Constructor Syntax . 4-36
tscollection Properties . 4-37

tscollection Methods . 4-39
General tscollection Methods . 4-39
Data and Time Manipulation Methods 4-39

Using Time Series Tools

5
Introduction . 5-2

Opening Time Series Tools . 5-2
Getting Help . 5-3
Time Series Tools Window . 5-3
Time Series Tools Workflow . 5-5
Generating Reusable M-Code . 5-6

Importing and Exporting Data . 5-8
Types of Data You Can Import . 5-8
How to Import Data . 5-8
Changes to Data Representation During Import 5-10
Importing Multivariate Data . 5-11
Importing Data with Missing Values 5-12
Exporting Data from Time Series Tools 5-13

Plotting Time Series . 5-14
Types of Plots in Time Series Tools 5-14
Creating a Plot . 5-15
Customizing Line and Marker Styles 5-16
Editing Plot Appearance . 5-16
Time Plots . 5-18
Spectral Plots . 5-19
Histograms . 5-21
Correlation Plots . 5-22
XY Plots . 5-27

Selecting Data for Analysis . 5-29
Selecting Data Using Rules . 5-29

viii Contents

Selecting Data Graphically . 5-30
Excluding Data from Analysis . 5-31

Editing Data, Time, Attributes, and Events 5-33
Displaying the Data Table . 5-33
Editing Data and Time . 5-34
Defining Data Attributes . 5-36
Assigning Quality Codes to Data . 5-38
Defining Events . 5-39

Processing and Manipulating Time Series 5-43

Example — Using MATLAB Time Series Tools 5-44
Loading Data into the MATLAB Workspace 5-44
Starting Time Series Tools . 5-44
Enabling M-Code Generation . 5-44
Importing Data into Time Series Tools 5-45
Creating a Time Plot . 5-47
Resampling Time Series . 5-53
Comparing Data on an XY Plot . 5-55
Viewing Generated M Code . 5-57
Exporting Time Series to the Workspace 5-59

Index

ix

x Contents

1

Preparing Data for Analysis

The following sections summarize MATLAB® data-analysis capabilities, and
provide information about preparing your data for analysis.

Using MATLAB for Data Analysis
(p. 1-3)

Provides an overview of data
analysis using MATLAB

Importing and Exporting Data
(p. 1-7)

Explains where to get information
about importing and exporting data

Plotting Data (p. 1-8) Provides information about
MATLAB plots, and includes an
example of loading data from a text
file and creating a time plot

Removing and Interpolating Missing
Values (p. 1-10)

Describes using NaNs to represent
missing data, as well as removing or
interpolating these values

Removing Outliers (p. 1-13) Describes how to identify and remove
values that seem inconsistent with
the majority of the data

Filtering Data (p. 1-15) Describes how to smooth and shape
data using filters

Detrending Data (p. 1-20) Describes how to remove the mean
or a best-fit line from the data

1 Preparing Data for Analysis

Finite Differences (p. 1-24) Summarizes MATLAB functions for
computing finite differences

Descriptive Statistics (p. 1-25) Summarizes MATLAB functions for
calculating descriptive statistics and
provides an example of using the
Data Statistics dialog box

1-2

Using MATLAB for Data Analysis

Using MATLAB for Data Analysis
MATLAB® provides functions and GUIs to perform a variety of common
data-analysis tasks, such as plotting data, computing descriptive statistics,
and performing linear correlation analysis, data fitting, and Fourier analysis.

Typically, the first step to any data analysis it to plot the data. After
examining the plot, you can determine which portions of the data to include in
the analysis. You can also use the plot to evaluate if your data contains any
features that might distort or confuse the analysis results, and then process
your data to work only with the regions of interest.

This chapter describes the common techniques you can use to ready your data
for analysis. When you work with empirical data, it is often necessary to
treat it by doing the following:

• Removing or interpolating missing values. For more information, see
“Removing and Interpolating Missing Values” on page 1-10.

• Removing outliers. For more information, see “Removing Outliers” on page
1-13.

• Smoothing the data using a first-order filter, a transfer function, or an ideal
filter. For more information, see “Filtering Data” on page 1-15.

• Removing the mean or a linear trend (detrending). For more information,
see “Detrending Data” on page 1-20.

• Differencing the data. For more information, see “Finite Differences” on
page 1-24.

After isolating the data of interest, you can proceed with the core data-analysis
tasks, which might include basic data fitting (see Chapter 2, “Data Fitting
Using Linear Regression”) and Fourier analysis (see Chapter 3, “Fourier
Analysis”). If your data analysis requires more advanced or specialized
functionality, see “Related Toolboxes” on page 1-5 to learn about the toolboxes
available from The MathWorks.

If you are working with time-series data, MATLAB provides the timeseries
and tscollection objects and methods that enable you to efficiently
represent and manipulate time-series data. For more information about
creating and working with these objects, see Chapter 4, “Using Time-Series

1-3

1 Preparing Data for Analysis

Objects and Methods”. Alternatively, you can use the MATLAB Time Series
Tools graphical user interface (GUI) to import, plot, and analyze time series.
For more information, see Chapter 5, “Using Time Series Tools”.

Calculations on Vectors and Matrices
Whereas some MATLAB functions support only vector inputs, others accept
matrices.

When your data is a vector, the result is the same whether the vector has a
rowwise or columnwise orientation.

However, when your data is a matrix, MATLAB performs calculations
independently for each column. This means that when you pass a matrix
as an argument to the function max, for example, the result is a row vector
containing maximum data values for each column in the matrix.

Note When your data is a matrix where each row contains a data set, you
must transpose the matrix before proceeding with the data-analysis tasks to
make the data sets have a columnwise orientation. For example, to transpose
a real matrix A, use the syntax A'.

MATLAB GUIs for Data Analysis
In addition to the various MATLAB functions for performing data analysis,
MATLAB provides four graphical user interfaces (GUIs) that facilitate
common data-analysis tasks. The following table lists these GUIs and tells
you how to get more information about each one.

MATLAB GUIs for Data Analysis

GUI Description More Information

MATLAB
Figure
window

For plotting variables in the
MATLAB workspace and
editing plot properties

MATLAB Graphics
documentation

1-4

Using MATLAB for Data Analysis

MATLAB GUIs for Data Analysis (Continued)

GUI Description More Information

Data
Statistics
dialog box

For calculating and plotting
descriptive statistics

“Example — Using MATLAB
Data Statistics” on page 1-28

Basic
Fitting
dialog box

For basic data fitting using
polynomial and spline
models, as well as plotting
fitted data and residuals

“Using MATLAB Basic
Fitting” on page 2-8

Time Series
Tools

For plotting and
manipulating time-series
data

Chapter 5, “Using Time
Series Tools”

Related Toolboxes
The following table summarizes the toolboxes that extend MATLAB
data-analysis capabilities. For the latest information about these and other
MathWorks products, point your Web browser to

www.mathworks.com

Toolboxes That Extend MATLAB Data Analysis

Toolbox Description

Bioinformatics Toolbox Import, analyze, and visualize genomic,
proteomic, and microarray data.

Curve Fitting Toolbox Interactively model one-dimensional data.

Financial Toolbox Analyze financial data and develop financial
algorithms.

Image Processing
Toolbox

Perform image processing, analysis, and
algorithm development.

Model-Based Calibration
Toolbox

Calibrate complex powertrain systems.

Neural Network Toolbox Design and simulate neural networks.

1-5

http://www.mathworks.com/
http://www.mathworks.com/products/bioinfo/
http://www.mathworks.com/products/curvefitting/
http://www.mathworks.com/products/finance/
http://www.mathworks.com/products/image/
http://www.mathworks.com/products/mbc/
http://www.mathworks.com/products/neuralnet/

1 Preparing Data for Analysis

Toolboxes That Extend MATLAB Data Analysis (Continued)

Toolbox Description

Optimization Toolbox Fit nonlinear models to data.

Signal Processing
Toolbox

Perform signal processing, analysis, and
algorithm development.

Spline Toolbox Create and manipulate spline approximation
models of data.

Statistics Toolbox Analyze and model data, simulate systems, and
develop statistical algorithms.

System Identification
Toolbox

Create linear dynamic models from measured
input-output data.

Wavelet Toolbox Analyze and synthesize signals and images
using wavelet techniques.

1-6

http://www.mathworks.com/products/optimization/
http://www.mathworks.com/products/signal/
http://www.mathworks.com/products/splines/
http://www.mathworks.com/products/statistics/
http://www.mathworks.com/products/sysid/
http://www.mathworks.com/products/wavelet/

Importing and Exporting Data

Importing and Exporting Data
The first step in analyzing data is to import it into MATLAB. The MATLAB
Programming documentation provides detailed information about supported
data formats and the functions for bringing data into MATLAB.

The easiest way to import data into MATLAB is to use the MATLAB Import
Wizard, as described in the MATLAB Programming documentation. With the
Import Wizard, you can import the following types of data sources:

• Text files, such as .txt and .dat

• MAT-files

• Spreadsheet files, such as .xls

• Graphics files, such as .gif and .jpg

• Audio and video files, such as .avi and .wav

The MATLAB Import Wizard processes the data source and recognizes data
delimiters, as well as row or column headers, to facilitate the process of data
selection.

After you finish analyzing your data, you might have created new variables.
You can export these variables to a variety of file formats. For more
information about exporting data from the MATLAB workspace, see the
MATLAB Programming documentation.

When working with time-series data, it is easiest to use the Time Series Tools
GUI to import the data and create timeseries objects. The Import Wizard in
Time Series Tools also makes it easy to import or define a time vector for your
data. For more information, see “Importing and Exporting Data” on page 5-8.

1-7

1 Preparing Data for Analysis

Plotting Data
After you import data into MATLAB, it is a good idea to plot the data so that
you can explore its features. An exploratory plot of your data enables you
to identify discontinuities and potential outliers, as well as the regions of
interest.

The MATLAB Graphics documentation fully describes the MATLAB figure
window, which displays the plot. It also discusses the various plot tools that
are available in MATLAB to help you annotate and edit plot properties.

If you are working with time-series data, see Chapter 5, “Using Time Series
Tools”, for detailed information about working with time-series plots.

Example — Loading and Plotting Data
In this example, you perform the following tasks on the data in a
space-delimited text file:

• “Loading the Data” on page 1-8

• “Plotting the Data” on page 1-9

This example uses sample data in count.dat that consists of three sets
of hourly traffic counts, recorded at three different town intersections over
a 24-hour period. Each data column in the file represents data for one
intersection.

Loading the Data
Import data into MATLAB using the load function:

load count.dat

Loading this data creates a 24-by-3 matrix called count in the MATLAB
workspace.

1-8

Plotting Data

You can get the size of the data matrix by

[n,p] = size(count)
n =

24
p =

3

where n represents the number of rows, and p represents the number of
columns.

Plotting the Data
Create a time vector, t, containing integers from 1 to n:

t = 1:n;

Use the following commands to plot the data as a function of time, and to
annotate the plot:

plot(t,count),
legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count')

Traffic Counts at Three Intersections

1-9

1 Preparing Data for Analysis

Removing and Interpolating Missing Values
The correct handling of missing data is a difficult problem in data analysis
and often depends on your specific situation. Based on the context of your
data, you must decide whether it is appropriate to exclude missing data from
analysis or to replace it using a method such as interpolation.

This section contains the following topics:

• “Representing Missing Data Values” on page 1-10

• “Calculating with NaNs” on page 1-10

• “Removing NaNs from the Data” on page 1-11

• “Interpolating Missing Data” on page 1-12

Representing Missing Data Values
In MATLAB, missing or unavailable data values are represented by the
special value NaN, which stands for Not-a-Number.

The IEEE floating-point arithmetic convention defines NaN as the result of
an undefined operation, such as 0/0.

Calculating with NaNs
When you perform calculations on a MATLAB variable that contains NaNs,
the NaN values are propagated to the final result. This might render the result
useless.

For example, consider a matrix containing the 3-by-3 magic square with its
center element replaced with NaN:

a = magic(3); a(2,2) = NaN

a =
8 1 6
3 NaN 7
4 9 2

1-10

Removing and Interpolating Missing Values

Compute the sum for each column in the matrix:

sum(a)

ans =
15 NaN 15

Notice that the sum of the elements in the middle column is a NaN value
because that column contains a NaN.

If you do not want to have NaNs in your final results, you must remove these
values from your data. For more information, see “Removing NaNs from
the Data” on page 1-11.

Removing NaNs from the Data
You can use the MATLAB function isnan to identify NaNs in the data, and
then remove them using the techniques in the following table.

Note You must use the function isnan to identify NaNs because, by IEEE
arithmetic convention, the logical comparison NaN == NaN always produces
0 (i.e., it never evaluates to true). Therefore, you cannot use x(x==NaN) =
[] to remove NaNs from your data.

Code Description

i = find(~isnan(x));

x = x(i)

Find the indices of elements in a
vector x that are not NaNs. Keep only
the non-NaN elements.

x = x(~isnan(x)); Remove NaNs from a vector x.

x(isnan(x)) = []; Remove NaNs from a vector x
(alternative method).

X(any(isnan(X),2),:) = []; Remove any rows containing NaNs
from a matrix X.

1-11

1 Preparing Data for Analysis

If you frequently need to remove NaNs, you might want to write a short M-file
function that you can call:

function X = exciseRows(X)
X(any(isnan(X),2),:) = [];

The following command computes the correlation coefficients of X after all
rows containing NaNs are removed:

C = corrcoef(excise(X));

For more information about correlation coefficients, see “Linear Correlation
Analysis” on page 2-4.

Interpolating Missing Data
You can use interpolation to find intermediate points in your data. The
simplest function for performing interpolation is interp1, which is a 1-D
interpolation function.

By default, the interpolation method is 'linear', which fits a straight line
between a pair of existing data points to calculate the intermediate value. The
complete set of available methods, which you can specify as arguments in the
interp1 function, includes the following:

• 'nearest' — Nearest neighbor interpolation

• 'linear' — Linear interpolation

• 'spline' — Piecewise cubic spline interpolation

• 'pchip' or 'cubic' — Shape-preserving piecewise cubic interpolation

• 'v5cubic' — Cubic interpolation from MATLAB 5, which does not use
'extrapolate' and uses 'spline' when X is not equally spaced

For more information about interp1, see the MATLAB documentation or
type at the MATLAB prompt

help interp1

1-12

Removing Outliers

Removing Outliers
When you examine a data plot, you might find that some points appear to
dramatically differ from the rest of the data. In some cases, it is reasonable
to consider such points outliers, or data values that do not appear to be
consistent with the rest of the data.

The following example illustrates how to remove outliers from three data sets
in the 24-by-3 matrix count. In this case, an outlier is defined as a value that
is more than three standard deviations away from the mean.

Caution Be cautious about changing data unless you are confident that
you understand the source of the problem you want to correct. Removing an
outlier has a greater effect on the standard deviation than on the mean of the
data. Deleting one such point leads to a smaller new standard deviation,
which might result in making some remaining points appear to be outliers!

% Import the sample data
load count.dat;
% Calculate the mean and the standard deviation
% of each data column in the matrix
mu = mean(count)
sigma = std(count)

MATLAB displays

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281

1-13

1 Preparing Data for Analysis

When an outlier is considered to be more than three standard deviations away
from the mean, you can use the following syntax to determine the number of
outliers in each column of the count matrix:

[n,p] = size(count);
% Create a matrix of mean values by
% replicating the mu vector for n rows
MeanMat = repmat(mu,n,1);
% Create a matrix of standard deviation values by
% replicating the sigma vector for n rows
SigmaMat = repmat(sigma,n,1);
% Create a matrix of zeros and ones, where ones indicate
% the location of outliers
outliers = abs(count - MeanMat) > 3*SigmaMat;
% Calculate the number of outliers in each column
nout = sum(outliers)

MATLAB returns the following number of outliers in each column:

nout =
1 0 0

There is one outlier in the first data column of count and none in the other
two columns.

To remove an entire row of data containing the outlier, type

count(any(outliers,2),:) = [];

Here, any(outliers,2) returns a 1 when any of the elements in the outliers
vector is a nonzero number, and the argument 2 specifies that any works down
the second dimension of the count matrix—its columns.

1-14

Filtering Data

Filtering Data
MATLAB provides functions for working with difference equations and filters
to shape the variations in the raw data. These functions operate on both
vectors and matrices. You can filter data to smooth out high-frequency
fluctuations or remove periodic trends of a specific frequency.

A vector input represents a single, sampled data signal (or sequence). For a
matrix input, each signal corresponds to a column in the matrix and each
data sample is a row.

To learn more about filter applications, see the Signal Processing Toolbox
documentation.

This section contains the following topics:

• “Filter Function” on page 1-15

• “Example 1 — Moving-Average Filter” on page 1-16

• “Example 2 — Discrete Filter” on page 1-17

Filter Function
The function

y = filter(b,a,x)

creates filtered data y by processing the data in vector x with the filter
described by vectors a and b.

The filter function is a general tapped delay-line filter, described by the
difference equation

a y n b x n b x n b N x n Nb b() () () () () () () ()1 1 2 1 1= + − + + − +…
 − − − − − +a y n a N x n Na a() () () ()2 1 1…

Here, n is the index of the current sample, Na is the order of the polynomial

described by vector a, and Nb is the order of the polynomial described by

1-15

1 Preparing Data for Analysis

vector b. The output y(n) is a linear combination of current and previous
inputs, x(n) x(n – 1)..., and previous outputs, y(n – 1) y(n – 2)... .

Example 1 — Moving-Average Filter
You can smooth the data in count.dat using a moving-average filter to see the
average traffic flow over a 4-hour window (covering the current hour and the
previous 3 hours). This is represented by the following difference equation:

y n x n x n x n x n() () () () ()= + − + − + −1
4

1
4

1
4

1
41 2 3

The corresponding vectors are

a = 1;
b = [1/4 1/4 1/4 1/4];

Enter the following syntax to load the sample data:

load count.dat

This adds the matrix count to the workspace.

Extract the first column of count and assign it to the vector x:

x = count(:,1);

The 4-hour moving average of the data is calculated by

y = filter(b,a,x);

Compare the original data and the smoothed data with an overlaid plot of
the two curves:

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on
legend('Original Data','Smoothed Data',2)

The filtered data, represented by the solid line in the plot, is the 4-hour moving
average of the count data. The original data is represented by the dashed line.

1-16

Filtering Data

Plot of Original and Smoothed Data

Example 2 — Discrete Filter
You use the discrete filter to shape the data by applying a transfer function to
the input signal.

Depending on your objectives, the transfer function you choose might alter
both the amplitude and the phase of the variations in the data at different
frequencies to produce either a smoother or a rougher output.

1-17

1 Preparing Data for Analysis

Taking the z-transform of the following difference equation

a y n b x n b x n b N x n Nb b() () () () () () () ()1 1 2 1 1= + − + + − +…
 − − − − − +a y n a N x n Na a() () () ()2 1 1…

results in the following transfer function:

Y z H z X z
b b z b N z

a a z a N
b

Nb

() () ()
() () ()

() () (
= =

+ +
+ +

−
− − +

−
1

1 1

1
1 2

1 2

…

… aa
Nz

X z
a)

()− +1

Here Y(z) is the z-transform of the filtered output y(n). The coefficients b and
a are unchanged by the z-transform.

In digital signal processing (DSP), it is customary to write transfer functions

as rational expressions in z−1 and to order the numerator and denominator

terms in ascending powers of z−1 .

Consider the following transfer function:

H z
b z

a z

z

z
()

()

() .
−

−

−

−

−= = +
+

1
1

1

1

1
2 3

1 0 2

To apply this transfer function to the data in count.dat:

1 Load the matrix count into the workspace:

load count.dat;

2 Extract the first column and assign it to x:

x = count(:,1);

3 Enter the coefficients of the denominator ordered in ascending powers of

z−1 to represent 1 0 2 1+ −. z :

a = [1 0.2];

1-18

Filtering Data

4 Enter the coefficients of the numerator to represent 2 2 1+ −z :

b = [2 3];

5 Call the filter function:

y = filter(b,a,x);

6 Compare the original data and the shaped data with an overlaid plot of
the two curves:

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on
legend('Original Data','Shaped Data',2)

As you can see from the plot, this filter primarily modifies the amplitude
of the original data.

Plot of Original and Shaped Data

1-19

1 Preparing Data for Analysis

Detrending Data
The MATLAB function detrend subtracts the mean or a best-fit line (in
the least-squares sense) from your data. If your data contains several data
columns, MATLAB detrends each data column separately.

Removing a trend from the data enables you to focus your analysis on the
fluctuations in the data about the trend. A linear trend typically indicates a
systematic increase or decrease in the data. This might be caused by sensor
drift, for example.

You must decide whether it makes sense to remove trend effects in the data
based on the objectives of your analysis.

Example — Removing Linear Trends from the Data
This example shows how to remove a linear trend from daily closing stock
prices to emphasize the price fluctuations about the overall increase. This
data is available in the predict_ret_data.mat file.

You can follow along with the steps in this example to perform the following
tasks:

• “Loading and Plotting Data” on page 1-20

• “Detrending Data and Plotting Results” on page 1-22

Loading and Plotting Data

1 Load the sample data:

load predict_ret_data.mat

This adds the variable sdata to the workspace, which contains the daily
stock prices.

1-20

Detrending Data

2 View the contents of the column vector sdata:

sdata

The last data value is a NaN, which must be removed before detrending
the data.

3 Identify and remove the NaN value from sdata:

sdata(any(isnan(sdata),2),:) = []

For more information about removing NaNs, see “Removing NaNs from the
Data” on page 1-11.

4 Plot the data:

plot(t, sdata,'+')
legend('Original Data',1);
xlabel('Time (days)');
ylabel('Stock Price (dollars)');

1-21

1 Preparing Data for Analysis

Daily Closing Stock Prices

Notice the systematic increase in the stock prices when this data was
collected.

Detrending Data and Plotting Results

1 Remove a best-fit line (in the least-squares sense) from sdata and save the
results to a new variable, detrend_sdata:

detrend_sdata=detrend(sdata);

2 Plot the detrended data in a new MATLAB Figure window:

figure
plot(detrend_sdata,'-')
legend('Detrended Data',2)
xlabel('Time (days)');
ylabel('Detrended Stock Price (dollars)');

1-22

Detrending Data

Stock Prices with the Removed Linear Trend

Notice that the data is now centered about 0 and the linear drift is removed
from the data.

1-23

1 Preparing Data for Analysis

Finite Differences
MATLAB provides three functions for finite difference calculations.

Function Description

del2 Discrete Laplacian of a matrix

diff Differences between successive elements of a vector;
numerical partial derivatives of a vector

gradient Numerical partial derivatives of a matrix

The diff function computes the difference between successive elements in a
numeric vector. That is, diff(X) is [X(2)-X(1) X(3)-X(2)...X(n)-X(n-1)].
You might want to perform this operation on your data if you are more
interested in analyzing the changes in the values, rather than the absolute
values.

For a vector A,

A = [9 -2 3 0 1 5 4];
diff(A)

ans =
-11 5 -3 1 4 -1

Besides computing the first difference, you can use diff to determine certain
characteristics of vectors. For example, you can use diff to determine
whether the vector values are monotonically increasing or decreasing, or
whether a vector has equally spaced elements.

The following table provides examples for using diff with a vector x.

Test Description

any(diff(x)==0) Tests whether there are any repeated elements
in X

all(diff(x)>0) Tests whether the values are monotonically
increasing

all(diff(diff(x))==0) Tests for equally spaced vector elements

1-24

Descriptive Statistics

Descriptive Statistics
MATLAB provides a number of functions for calculating descriptive statistics
for your data. You can also use the MATLAB Data Statistics dialog box to
calculate statistics and plot them with the data in a MATLAB Figure window.

This section contains the following topics:

• “Functions for Calculating Descriptive Statistics” on page 1-25

• “Example — Using MATLAB Data Statistics” on page 1-28

If you need more advanced statistics functionality, you might want to use
the Statistics Toolbox. For more information see the Statistics Toolbox
documentation.

Functions for Calculating Descriptive Statistics
You can use the following MATLAB functions to calculate the descriptive
statistics for your data.

Note For matrix data, MATLAB calculates descriptive statistics for each
column independently.

Statistics Function Summary

Function Description

max Maximum value

mean Average or mean value

median Median value

min Smallest value

mode Most frequent value

1-25

1 Preparing Data for Analysis

Statistics Function Summary (Continued)

Function Description

std Standard deviation

var Variance, which measures the spread or dispersion of the
values

The following examples apply MATLAB functions to calculate descriptive
statistics:

• “Example 1 — Calculating Maximum, Mean, and Standard Deviation”
on page 1-26

• “Example 2 — Subtracting the Mean” on page 1-28

Example 1 — Calculating Maximum, Mean, and Standard
Deviation
This example shows how to use MATLAB functions to calculate the maximum,
mean, and standard deviation values for a 24-by-3 matrix called count.
MATLAB computes these statistics independently for each column in the
matrix.

% Load the sample data
load count.dat
% Find the maximum value in each column
mx = max(count)
% Calculate the mean of each column
mu = mean(count)
% Calculate the standard deviation of each column
sigma = std(count)

1-26

Descriptive Statistics

MATLAB responds with

mx =
114 145 257

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281

To get the row numbers where the maximum data values occur in each data
column, you can specify a second output parameter indx to return the row
index. For example:

[mx,indx] = max(count)

MATLAB responds with this result:

mx =
114 145 257

indx =
20 20 20

Here, the variable mx is a row vector that contains the maximum value in each
of the three data columns. The variable indx contains the row indices in each
column that correspond to the maximum values.

To find the minimum value in the entire count matrix, you can reshape this
24-by-3 matrix into a 72-by-1 column vector by using the syntax count(:).
Then, to find the minimum value in the single column, you can use the
following syntax:

min(count(:))

ans =
7

1-27

1 Preparing Data for Analysis

Example 2 — Subtracting the Mean
You can subtract the mean from each column of the matrix by using the
following syntax:

% Get the size of the count matrix
[n,p] = size(count)
% Compute the mean of each column
mu = mean(count)
% Create a matrix of mean values by
% replicating the mu vector for n rows
MeanMat = repmat(mu,n,1)
% Subtract the column mean from each element
% in that column
x = count - MeanMat

Note Subtracting the mean from the data is also called detrending. For
more information about removing the mean or the best-fit line from the data,
see “Detrending Data” on page 1-20.

Example — Using MATLAB Data Statistics
MATLAB provides the Data Statistics dialog box to help you calculate and
plot descriptive statistics with the data. This example shows how to use
MATLAB Data Statistics to calculate and plot statistics for a 24-by-3 matrix,
called count.

This section contains the following topics:

• “Calculating and Plotting Descriptive Statistics” on page 1-29

• “Formatting Data Statistics on Plots” on page 1-32

• “Saving Statistics to the MATLAB Workspace” on page 1-34

• “Generating an M-file” on page 1-35

Note MATLAB Data Statistics is available only for 2-D plots.

1-28

Descriptive Statistics

Calculating and Plotting Descriptive Statistics

1 Load and plot the data:

load count.dat
[n,p] = size(count);
% Define the x-values
t = 1:n;
% Plot the data and annotate the graph
plot(t,count)
legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count')

Note The legend contains the name of each data set, as specified by the
legend function: Location 1, Location 2, and Location 3. A data set
refers to each column of data in the array you plotted. If you do not name
the data sets, MATLAB assigns them default names: data 1, data 2, and
so on.

1-29

1 Preparing Data for Analysis

2 In the Figure window, select Tools > Data Statistics .

This opens the Data Statistics dialog box, which displays descriptive
statistics for the X- and Y-data of the Location 1 data set.

Note The Data Statistics GUI calculates the range, which is the difference
between the minimum and maximum values in the selected data set. The
Data Statistics GUI does not display the range on the plot.

1-30

Descriptive Statistics

3 Select a different data set in the Statistics for list: Location 2.

This displays the statistics for the X- and Y-data of the Location 2 data set.

4 Select the check box for each statistic you want to display on the plot.

For example, to plot the mean of Location 2, select the mean check box
in the Y column.

1-31

1 Preparing Data for Analysis

This plots a horizontal line to represent the mean of Location 2 and
updates the plot legend to include this statistic.

Formatting Data Statistics on Plots
The Data Statistics GUI uses colors and line styles to distinguish statistics
from the data on the plot. This portion of the example shows how to customize
the display of descriptive statistics on a plot, such as the color, line width,
line style, or marker.

Note Do not edit display properties of statistics until you finish plotting all
the statistics with the data. If you add or remove statistics after editing plot
properties, the changes to plot properties are lost.

To modify the display of data statistics on a plot:

1 In the MATLAB Figure window, click the (Edit Plot) button in the
toolbar.

This enables plot editing.

1-32

Descriptive Statistics

2 Double-click the statistic on the plot for which you want to edit display
properties. For example, double-click the horizontal line representing the
mean of Location 2.

This opens the Property Editor below the MATLAB Figure window, where
you can modify the appearance of the line used to represent this statistic.

3 In the Property Editor, specify the Line and Marker styles, sizes, and
colors.

Tip Alternatively, right-click the statistic on the plot, and select an option
from the shortcut menu.

1-33

1 Preparing Data for Analysis

Saving Statistics to the MATLAB Workspace
This portion of the example shows how to save statistics in the Data Statistics
GUI to the MATLAB workspace.

Note When your plot contains multiple data sets, you must save statistics
for each data set individually. To display statistics for a different data set,
select it from the Statistics for list in the Data Statistics GUI.

1 In the Data Statistics dialog box, click the Save to workspace button.

2 In the Save Statistics to Workspace dialog box, specify to save statistics
for either X-data, Y-data, or both. Then, enter the corresponding variable
names.

In this example, save only the Y-data. Enter the variable name as
Loc2countstats.

3 Click OK.

This saves the descriptive statistics to a structure. The new variable is
added to the MATLAB workspace.

1-34

Descriptive Statistics

To view the new structure variable, type the variable name at the MATLAB
prompt:

Loc2countstats

Loc2countstats =

min: 9
max: 145

mean: 46.5417
median: 36

mode: 9
std: 41.4057

range: 136

Generating an M-file
This portion of the example shows how to generate an M-file that reproduces
the format of the plot and the plotted statistics with new data.

1 In the Figure window, select File > Generate M-File.

This creates a function M-file and displays it in the MATLAB Editor. The
code in the M-file shows you how to programmatically reproduce what you
did interactively with the Data Statistics GUI and the Property Editor.

2 Change the name of the function on the first line of the M-file from
createfigure to something more specific, like countplot. Save the file to
your current directory with the file name countplot.m.

3 Generate some new, random count data:

randcount = 300*rand(24,3);

4 Reproduce the plot with the new data and the recomputed statistics:

countplot(t,randcount)

1-35

1 Preparing Data for Analysis

1-36

2

Data Fitting Using Linear
Regression

The following sections describe how to use correlation analysis in MATLAB to
determine if quantities are related, and to model the relationship between
pairs of quantities using linear regression.

Introduction (p. 2-2) Summarizes MATLAB data-fitting
capabilities

Linear Correlation Analysis (p. 2-4) Describes how to calculate
correlation coefficients and
covariance

Using MATLAB Basic Fitting (p. 2-8) Describes MATLAB Basic Fitting for
fitting polynomial and spline models,
generating plots of fitted data and
residuals, and saving fit information
to the MATLAB workspace

Data Fitting Using MATLAB
Functions (p. 2-22)

Describes how to fit polynomials,
general linear models, and
multiple-regression models using
MATLAB functions

Example — Data Fitting Using
MATLAB Functions (p. 2-30)

Shows how to use MATLAB functions
to fit polynomials, generate plots
of fitted data and residuals, and
calculate confidence bounds

2 Data Fitting Using Linear Regression

Introduction
MATLAB allows you to model your data using linear regression. A model
is a relationship between independent and dependent variables. Linear
regression produces a model that is linear in the model coefficients. The most
common type of linear regression is a least-squares fit, which can fit both
lines and polynomials.

Before you model the relationship between pairs of quantities, it is a good idea
to perform correlation analysis to establish if a relationship exists between
these quantities. For more information, see “Linear Correlation Analysis”
on page 2-4.

MATLAB provides the Basic Fitting GUI for fitting your data, which enables
you to calculate model coefficients and plot the model on top of the data. For
an example of using this GUI, see “Example — Using MATLAB Basic Fitting”
on page 2-10. You can also use the MATLAB functions polyfit and polyval
to fit your data to a model that is linear in the coefficients. For an example
of using these functions, see “Example — Data Fitting Using MATLAB
Functions” on page 2-30.

If you need to fit nonlinear data using MATLAB, you can try transforming the
variables in your model to make the model linear, use the nonlinear algorithm
fminsearch, or use the Curve Fitting Toolbox (see the Curve Fitting Toolbox
documentation).

In this chapter, you learn how to do the following:

• Use correlation analysis to determine whether two quantities are related to
justify fitting the data.

• Fit a linear model to the data.

• Plot the model and the data on the same plot.

• Evaluate the goodness of fit using a plot of the residuals.

Residuals and Goodness of Fit
Residuals are defined as the difference between the observed values of the
dependent variable and the values that are predicted by the model. When

2-2

Introduction

you fit a model that is appropriate for your data, the residuals approximate
independent random errors.

To calculate fit parameters for a linear model, MATLAB minimizes the
sum of the squares of the residuals to produce a good fit. This is called a
least-squares fit.

You can gain insight into the “goodness” of a fit by visually examining a plot
of the residuals: if the residual plot has a pattern, this indicates that the
model does not properly fit the data.

Notice that the “goodness” of a fit must be determined in the context of your
data. For example, if your goal of fitting the data is to extract coefficients
that have physical meaning, then it is important that your model reflect the
physics of the data. In this case, understanding what your data represents
and how it was measured is just as important as evaluating the goodness of fit.

When to Use the Curve Fitting Toolbox
The Curve Fitting Toolbox extends core MATLAB functionality by enabling
the following data-fitting capabilities:

• Linear and nonlinear parametric fitting, including standard linear least
squares, nonlinear least squares, weighted least squares, constrained least
squares, and robust fitting procedures

• Nonparametric fitting

• Statistics for determining the goodness of fit

• Extrapolation, differentiation, and integration

• GUI that facilitates data sectioning and smoothing

• Saving fit results in various formats, including M-files, MAT-files, and
workspace variables

For more information, see the Curve Fitting Toolbox documentation.

2-3

2 Data Fitting Using Linear Regression

Linear Correlation Analysis
Before you fit a function to model the relationship between two measured
quantities, it is a good idea to determine if a relationship exists between
these quantities.

Correlation is a method for establishing the degree of probability that a
linear relationship exists between two measured quantities. When there is
no correlation between the two quantities, then there is no tendency for the
values of one quantity to increase or decrease with the values of the second
quantity.

MATLAB provides the following three functions for computing correlation
coefficients and covariance. In typical data analysis applications, where you
are mostly interested in the degree of relationship between variables, you
need only to calculate correlation coefficients. That is, it is not necessary to
calculate the covariance independently.

Function Description

corrcoef Correlation coefficient matrix

cov Covariance matrix

xcorr (in
Signal
Processing
Toolbox)

Crosscorrelation sequence of a random process (includes
autocorrelation)

Covariance
Use the MATLAB cov function to explicitly calculate the covariance matrix
for a data matrix (where each column represents a separate quantity).

In typical data analysis applications, where you are mostly interested in the
degree of relationship between variables, you can calculate the correlation
coefficients directly without calculating the covariance first.

2-4

Linear Correlation Analysis

The covariance matrix has the following properties:

• cov(X) is symmetrical.

• diag(cov(X)) is a vector of variances for each data column, which represent
a measure of the spread or dispersion of data in the corresponding column.

• sqrt(diag(cov(X))) is a vector of standard deviations.

• The off-diagonal elements of the covariance matrix represent the covariance
between the individual data columns.

Here, X can be a vector or a matrix. For an m-by-n matrix, the covariance
matrix is n-by-n.

For an example of calculating the covariance, load the sample data in
count.dat that contains a 24-by-3 matrix:

load count.dat

Calculate the covariance matrix for this data:

cov(count)

MATLAB responds with the following result:

ans =
1.0e+003 *

0.6437 0.9802 1.6567
0.9802 1.7144 2.6908
1.6567 2.6908 4.6278

The covariance matrix for this data has the following form:

σ σ σ

σ σ σ

σ σ σ

σ σ

2
11

2
12

2
13

2
21

2
22

2
23

2
31

2
32

2
33

2 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=ij ji

2-5

2 Data Fitting Using Linear Regression

Here, σ2
ij is the covariance between column i and column j of the data.

Because the count matrix contains three columns, the covariance matrix
is 3-by-3.

Note In the special case when a vector is the argument of cov, the function
returns the variance.

Correlation Coefficients
The correlation coefficient matrix represents the normalized measure of the
strength of linear relationship between variables.

Correlation coefficients rk are given by

r

x x x x

x x
k

t
t

N

t k

t
t

N
=

−() −()

−()
=

+

=

∑

∑
1

2

1

where xt is a data value at time step t, k is the lag, and the overall mean is
given by

x
x
N

t

t

N
=

=
∑

1

2-6

Linear Correlation Analysis

The MATLAB function corrcoef produces a matrix of correlation coefficients
for a data matrix (where each column represents a separate quantity). The
correlation coefficients range from -1 to 1, where

• Values close to 1 suggest that there is a positive linear relationship between
the data columns.

• Values close to -1 suggest that one column of data has a negative linear
relationship to another column of data (anticorrelation).

• Values close to or equal to 0 suggest there is no linear relationship between
the data columns.

For an m-by-n matrix, the correlation-coefficient matrix is n-by-n. The
arrangement of the elements in the correlation coefficient matrix corresponds
to the location of the elements in the covariance matrix, as described in
“Covariance” on page 2-4.

For an example of calculating correlation coefficients, load the sample data in
count.dat that contains a 24-by-3 matrix:

load count.dat

Type the following syntax to calculate the correlation coefficients:

corrcoef(count)

This results in the following 3-by-3 matrix of correlation coefficients:

ans =
1.0000 0.9331 0.9599
0.9331 1.0000 0.9553
0.9599 0.9553 1.0000

Because all correlation coefficients are close to 1, there is a strong correlation
between each pair of data columns in the count matrix.

2-7

2 Data Fitting Using Linear Regression

Using MATLAB Basic Fitting
MATLAB provides the Basic Fitting GUI to help you fit polynomial and spline
models to your data, plot the model on top of your data, and extract model
coefficients.

This section contains the following topics:

• “What Is MATLAB Basic Fitting?” on page 2-8

• “Sorting Data to Improve Performance” on page 2-8

• “Opening MATLAB Basic Fitting” on page 2-9

• “Example — Using MATLAB Basic Fitting” on page 2-10

What Is MATLAB Basic Fitting?
MATLAB Basic Fitting provides a graphical user interface (GUI) to help you
perform the following data-fitting tasks:

• Model the data using a spline interpolant, a shape-preserving interpolant,
or a polynomial (up to the tenth degree)

• Plot one or more fits overlaying the data and the residuals

• Get model coefficients and the norm of the residuals (a goodness-of-fit
indicator)

• Interpolate or extrapolate data by using the data model

• Save the fit and evaluated results to the MATLAB workspace

• Generate an M-file to recompute fits with new data

Note MATLAB Basic Fitting is available only for 2-D plots.

Sorting Data to Improve Performance
If your data set is large and the values are not sorted in ascending order, it
takes longer to fit your data. This can occur because Basic Fitting sorts the
values first.

2-8

Using MATLAB Basic Fitting

In some cases, you can speed up the fitting process by presorting the data
before you open the Basic Fitting GUI.

For example, use the following syntax to create sorted vectors, x_sorted and
y_sorted, from the original data vectors x and y:

[x_sorted, i] = sort(x);
y_sorted = y(i);

Opening MATLAB Basic Fitting
You open the Basic Fitting dialog box from the MATLAB Figure window
where you plotted data by selecting Tools > Basic Fitting. To get detailed
instructions about working with Basic Fitting, click Help.

MATLAB Basic Fitting enables you to do the following:

• Select the data you want to fit from a list of data sets currently in the
MATLAB Figure window.

• Plot a model on top of the data, display the model equations, and plot the
residuals.

• Display model coefficients.

• Interpolate and extrapolate ordinate values using the selected model.

2-9

2 Data Fitting Using Linear Regression

Example — Using MATLAB Basic Fitting
In this example, you use MATLAB Basic Fitting to perform the following
tasks:

• “Loading and Plotting the Data” on page 2-10

• “Fitting the Data” on page 2-12

• “Viewing and Saving Fit Parameters” on page 2-16

• “Interpolating Using the Model” on page 2-17

• “Generating an M-file” on page 2-20

Loading and Plotting the Data
You will use data in the census.mat file for this example, which contains U.S.
population data for the years 1790 through 1990.

2-10

Using MATLAB Basic Fitting

To load and plot the data, type the following commands at the MATLAB
prompt:

load census
plot(cdate,pop,'ro')

This adds the following two variables to the MATLAB workspace and plots
them:

• cdate is a column vector containing the years from 1790 to 1990 in
increments of 10.

• pop is a column vector with the U.S. population numbers corresponding to
each year in cdate.

Now you are ready to fit the data.

2-11

2 Data Fitting Using Linear Regression

Fitting the Data

1 Open the Basic Fitting dialog box by selecting Tools > Basic Fitting in
the Figure window.

2 In the Plot fits area of the Basic Fitting dialog box, select the cubic check
box to fit a cubic polynomial to the data.

MATLAB displays the following warning:

Polynomial is badly conditioned. Removing
repeated data points or centering and scaling
may improve results.

To improve model accuracy, select the Center and scale X data check box.
For more information about this option, click the Help button.

2-12

Using MATLAB Basic Fitting

Note After centering and scaling the independent variable (X), the values
of the fitted coefficients are changed from those obtained using the original
data. This does not change the functional form of the model and the norm
of the residuals. Furthermore, the plot still shows the original, unscaled X
values.

3 Select the options that do the following:

• Display the model equation in the plot.

• Plot the residuals as a subplot in the MATLAB Figure window that
shows the data.

• Display the norm of the residuals.

2-13

2 Data Fitting Using Linear Regression

2-14

Using MATLAB Basic Fitting

The resulting fit and residuals are shown in the following plot:

The cubic fit does not appear to be adequate before the year 1790, where it
indicates a decreasing population. However, the model seems to approximate
the data reasonably well after 1790. A pattern in the residuals indicates that
this fit might not be appropriate for modeling this data. However, this decision
must be made in the context of the data to determine if a model is useful.

The legend contains the name of the data set and the fit equation. A data set
refers to a column of data in each array you plot. Each data set is assigned a
default name in the Basic Fitting GUI (for example, data 1 and data 2). In
this example, you only have one data set—data 1.

For comparison, try fitting another equation to the census data by selecting it
in the Plot fits area.

2-15

2 Data Fitting Using Linear Regression

Tip You can change the default plot settings or rename data sets by using
the Property Editor. These changes are undone when you select to fit another
model.

Viewing and Saving Fit Parameters

In the Basic Fitting dialog box, click the button to display the estimated
coefficients and the norm of the residuals (an indicator of the goodness of
fit) in the Numerical results area.

To view the coefficients for a specific fit, select the type of fit from the Fit list.
This displays the results in the Basic Fitting dialog box, but does not plot
them in the Figure window.

2-16

Using MATLAB Basic Fitting

Note If you also want to display this fit on the plot, you must select the
corresponding Plot fits check box.

You can save the fit data to the MATLAB workspace by clicking the Save to
workspace button in the Numerical results area. This opens the following
dialog box:

Click OK to save the fit parameters as a MATLAB structure:

fit
fit =

type: 'polynomial degree 3'
coeff: [0.9210 25.1834 73.8598 61.7444]

Notice that the coefficients are based on the centered and scaled X values. For
more information about centering and scaling for improved accuracy of the fit,
see “Fitting the Data” on page 2-12.

Tip You can call this structure in subsequent analysis.

Interpolating Using the Model
In this portion of the example, you will interpolate the population in 1965
using the cubic model.

2-17

2 Data Fitting Using Linear Regression

In the Basic Fitting dialog box, click the button to specify a vector of X
values at which to evaluate the current fit.

1 In the Enter value(s)... field, type the following value:

1965

Note Use an unscaled and uncentered X value. You do not need to center
and scale it first, even though you selected to scale X values to obtain the
coefficients in “Fitting the Data” on page 2-12. Basic Fitting performs the
necessary calculations behind the scenes.

2 Click Evaluate.

The X values and the corresponding values for f(X) are evaluated from the
fit and displayed in a table, as shown below:

2-18

Using MATLAB Basic Fitting

3 Select the Plot evaluated results check box to display the interpolated
value:

4 Save the interpolated population (fx value) in 1965 (x value) to the
MATLAB workspace by clicking Save to workspace.

This opens the following dialog box, where you specify the variable names:

2-19

2 Data Fitting Using Linear Regression

Generating an M-file
This portion of the example shows how to generate an M-file that recomputes
the fit with new data.

1 In the Figure window, select File > Generate M-File.

This creates a function M-file and displays it in the MATLAB Editor. The
code in the M-file shows you how to programmatically reproduce what you
did interactively with the Basic Fitting dialog box.

2 Change the name of the function on the first line of the M-file from
createfigure to something more specific, like censusplot. Save the file to
your current directory with the file name censusplot.m

3 Generate some new, randomly perturbed census data:

randpop = pop + 10*randn(size(pop));

4 Reproduce the plot with the new data and recompute the fit:

censusplot(cdate,randpop,1965)

2-20

Using MATLAB Basic Fitting

2-21

2 Data Fitting Using Linear Regression

Data Fitting Using MATLAB Functions
This section contains the following topics:

• “MATLAB Functions for Polynomial Models” on page 2-22

• “Linear Model with Nonpolynomial Terms” on page 2-26

• “Multiple Regression” on page 2-28

MATLAB Functions for Polynomial Models
MATLAB provides two functions for modeling your data with a polynomial.

Polynomial Fit Functions

Function Description

polyfit polyfit(x,y,n) finds the coefficients of a polynomial
p(x) of degree n that fits the y data by minimizing the
sum of the squares of the deviations of the data from
the model (least-squares fit).

polyval polyval(p,x) returns the value of a polynomial of
degree n that was determined by polyfit, evaluated
at x.

For example, suppose you measure a quantity y at several values of time t:

t = [0 0.3 0.8 1.1 1.6 2.3];
y = [0.6 0.67 1.01 1.35 1.47 1.25];
plot(t,y,'o')

2-22

Data Fitting Using MATLAB Functions

Plot of y Versus t

You can try modeling this data using a second-degree polynomial function:

y a t a t a= + +2
2

1 0

The unknown coefficients a0 , a1 , and a2 are computed by minimizing the
sum of the squares of the deviations of the data from the model (least-squares
fit).

To find the polynomial coefficients, type the following at the MATLAB prompt:

p=polyfit(t,y,2)

MATLAB calculates the polynomial coefficients in descending powers:

p =
-0.2942 1.0231 0.4981

2-23

2 Data Fitting Using Linear Regression

The second-degree polynomial model of the data is given by the following
equation:

y t t= − + +0 2942 1 0231 0 49812. . .

To plot the model with the data, evaluate the polynomial at uniformly spaced
times t2 and overlay the original data on a plot:

t2 = 0:0.1:2.8; % Define a uniformly spaced time vector
y2=polyval(p,t2); % Evaluate the polynomial at t2
figure
plot(t,y,'o',t2,y2) % Plot the fit on top of the data

% in a new Figure window

Plot of Data (Points) and Model (Line)

Use the following syntax to calculate the residuals:

y2=polyval(p,t); % Evaluate model at the data time vector
res=y-y2; % Calculate the residuals by subtracting
figure, plot(t,res,'+') % Plot the residuals

2-24

Data Fitting Using MATLAB Functions

Plot of the Residuals

Notice that the second-degree fit roughly follows the basic shape of the data,
but does not capture the smooth curve on which the data seems to lie. There
appears to be a pattern in the residuals, which indicates that a different
model might be necessary. A fifth-degree polynomial (shown next) does a
better job of following the fluctuations in the data.

2-25

2 Data Fitting Using Linear Regression

Fifth-Degree Polynomial Fit

Note If you are trying to model a physical situation, it is always important
to consider whether a model of a specific order is meaningful in your situation.

Linear Model with Nonpolynomial Terms
When a polynomial function does not produce a satisfactory model of your
data, you can try using a linear model with nonpolynomial terms. For
example, consider the following function that is linear in the parameters a0,
a1, and a2, but nonlinear in the t data:

y a a e a tet t= + +− −
0 1 2

2-26

Data Fitting Using MATLAB Functions

You can compute the unknown coefficients a0 , a1 , and a2 by constructing
and solving a set of simultaneous equations and solving for the parameters.
The following syntax accomplishes this by forming a design matrix, where
each column represents a variable used to predict the response (a term in the
model) and each row corresponds to one observation of those variables:

% Enter t and y as columnwise vectors
t = [0 0.3 0.8 1.1 1.6 2.3]';
y = [0.6 0.67 1.01 1.35 1.47 1.25]';

% Form the design matrix
X = [ones(size(t)) exp(-t) t.*exp(-t)];

% Calculate model coefficients
a = X\y

a =
1.3983

- 0.8860
0.3085

Therefore, the model of the data is given by

y e tet t= − +− −1 3983 0 8860 0 3085. . .

Now evaluate the model at regularly spaced points and plot the model with
the original data, as follows:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T) T.*exp(-T)]*a;
plot(T,Y,'-',t,y,'o'), grid on

2-27

2 Data Fitting Using Linear Regression

Linear Fit with Nonpolynomial Terms

Multiple Regression
When y is a function of more than one independent variable, the matrix
equations that express the relationships among the variables must be
expanded to accommodate the additional data. This is called multiple
regression.

Suppose you measure a quantity y for several values of x1 and x2. Enter these
variables in the MATLAB Command Window, as follows:

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
y = [.17 .26 .28 .23 .27 .24]';

A model of this data is of the form

y a a x a x= + +0 1 1 2 2

2-28

Data Fitting Using MATLAB Functions

Multiple regression solves for unknown coefficients a0 , a1 , and a2 by
minimizing the sum of the squares of the deviations of the data from the
model (least-squares fit).

Construct and solve the set of simultaneous equations by forming a design
matrix, X, and solving for the parameters by using the backslash operator:

X = [ones(size(x1)) x1 x2];
a = X\y

a =
0.1018
0.4844

-0.2847

The least-squares fit model of the data is

y x x= + −0 1018 0 4844 0 28471 2. . .

To validate the model, find the maximum of the absolute value of the deviation
of the data from the model:

Y = X*a;
MaxErr = max(abs(Y - y))

MaxErr =
0.0038

This value is much smaller than any of the data values, indicating that this
model accurately follows the data.

2-29

2 Data Fitting Using Linear Regression

Example — Data Fitting Using MATLAB Functions
In this example, you use MATLAB functions to accomplish the following:

• “Calculating Correlation Coefficients” on page 2-31

• “Fitting a Polynomial to the Data” on page 2-32

• “Plot and Calculate Confidence Bounds” on page 2-34

This example uses the data in census.mat, which contains U.S. population
data for the years 1790 to 1990.

To load and plot the data, type the following commands at the MATLAB
prompt:

load census
plot(cdate,pop,'ro')

This adds the following two variables to the MATLAB workspace:

• cdate is a column vector containing the years 1790 to 1990 in increments
of 10.

• pop is a column vector with the U.S. population numbers corresponding to
each year in cdate.

2-30

Example — Data Fitting Using MATLAB Functions

The following plot of the data shows a strong pattern, which indicates a high
correlation between the variables.

U.S. Population from 1790 to 1990

Calculating Correlation Coefficients
In this portion of the example, you determine the statistical correlation
between the variables cdate and pop to justify modeling the data. For more
information about correlation coefficients, see “Linear Correlation Analysis”
on page 2-4.

Type the following syntax at the MATLAB prompt:

corrcoef(cdate,pop)

MATLAB calculates the following correlation-coefficient matrix:

ans =

1.0000 0.9597
0.9597 1.0000

2-31

2 Data Fitting Using Linear Regression

The diagonal matrix elements represent the perfect correlation of each
variable with itself and are equal to 1. The off-diagonal elements are very
close to 1, indicating that there is a strong statistical correlation between
the variables cdate and pop.

Fitting a Polynomial to the Data
This portion of the example applies the polyfit and polyval MATLAB
functions to model the data:

% Calculate fit parameters
[p,ErrorEst] = polyfit(cdate,pop,2);
% Evaluate the fit
pop_fit = polyval(p,cdate,ErrorEst);
% Plot the data and the fit
plot(cdate,pop_fit,'-',cdate,pop,'+');
% Annotate the plot
legend('Polynomial Model','Data');
xlabel('Census Year');
ylabel('Population (millions)');

2-32

Example — Data Fitting Using MATLAB Functions

The following figure shows that the quadratic-polynomial fit provides a good
approximation to the data:

Quadratic Polynomial Fit to the Census Data

To calculate the residuals for this fit, type the following syntax at the
MATLAB prompt:

res = pop - pop_fit;
figure, plot(cdate,res,'+')

2-33

2 Data Fitting Using Linear Regression

Residuals for the Quadratic Polynomial Model

Notice that the plot of the residuals exhibits a pattern, which indicates that a
second-degree polynomial might not be appropriate for modeling this data.

Plot and Calculate Confidence Bounds
Confidence bounds are confidence intervals for a predicted response. The
width of the interval indicates the degree of certainty of the fit.

This example applies polyfit and polyval to the census sample data to
produce confidence bounds for a second-order polynomial model.

2-34

Example — Data Fitting Using MATLAB Functions

The following syntax uses an interval of ±2Δ , which corresponds to a 95%
confidence interval for large samples:

% Evaluate the fit and the prediction error estimate (delta)
[pop_fit,delta] = polyval(p,cdate,ErrorEst);
% Plot the data, the fit, and the confidence bounds
plot(cdate,pop,'+',cdate,pop_fit,'g-',cdate,pop_fit+2*delta,'r:',...

cdate,pop_fit-2*delta,'r:');
% Annotate the plot
xlabel('Census Year');
ylabel('Population (millions)');
grid on

The 95% interval indicates that you have a 95% chance that a new observation
will fall within the bounds.

Quadratic Polynomial Fit with Confidence Bounds

2-35

2 Data Fitting Using Linear Regression

2-36

3

Fourier Analysis

The following sections describe how to perform Fourier analysis in MATLAB
for gaining insight into periodic signals.

Introduction (p. 3-2) Provides an overview of MATLAB
Fourier analysis capabilities

Function Summary (p. 3-3) Summarizes functions for
computing and manipulating
Fourier transforms

Calculating Fourier Transforms
(p. 3-4)

Describes how to calculate a Fourier
transform and provides an example

Example — Using FFT to Calculate
Sunspot Periodicity (p. 3-7)

Shows how to determine the
periodicity in sunspot data

Magnitude and Phase of
Transformed Data (p. 3-11)

Describes how to calculate the
magnitude and phase of transformed
data

FFT Length Versus Performance
(p. 3-13)

Describes how to improve
performance by changing the
length of the Fourier transform

3 Fourier Analysis

Introduction
Fourier analysis is particularly useful in areas such as signal and image
processing, filtering, convolution, frequency analysis, and power spectrum
estimation.

Fourier analysis provides insight into the periodicities in data by representing
the data using a linear combination of sinusoidal components with different
frequencies. The amplitude and phase of each sinusoidal component in the
sum determines the relative contribution of that frequency component to
the entire signal.

For discretely-sampled data, Fourier analysis is performed using the discrete
Fourier transform (DFT). MATLAB calculates the DFT of a data sequence by
applying the fast Fourier transform (FFT) algorithms; the FFT is an efficient
computational method and not a different kind of transform.

To learn about more advanced power-spectrum methods, see the Signal
Processing Toolbox documentation.

3-2

Function Summary

Function Summary
MATLAB provides the following functions for computing and working with
Fourier transforms.

FFT Function Summary

Function Description

abs Absolute value and complex magnitude

angle Phase angle

cplxpair Sort numbers into complex conjugate pairs

fft One-dimensional discrete Fourier transform, computed
with a fast Fourier transform (FFT) algorithm

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier transform

fftshift Shift DC component of the discrete Fourier transform
to the center of spectrum

ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

ifftn Inverse N-dimensional discrete Fourier transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Unwrap phase angle in radians

3-3

3 Fourier Analysis

Calculating Fourier Transforms
MATLAB performs Fourier analysis by computing the discrete Fourier
transform (DFT) using the fast Fourier transform (FFT) algorithms, which
improve computational performance.

Consider an input sequence x(n) of length N. The DFT of this sequence is
given by the vector X(k), as follows:

X k x n e k N
j k

n
N

n

N
() ()

()
= ≤ ≤

− − −⎛
⎝⎜

⎞
⎠⎟

=
∑

2 1
1

1
1

π

You use the fft function in MATLAB to compute the spectrum. The length
of X(k) is the same as the length of x(n). Notice that the value of X(1) equals
the sum of the data values in x(n).

Note Traditional Fourier equations have summations from 0 to N – 1.
However, because the first element of a MATLAB vector has the index of 1,
the summations in the above equations are from 1 to N and are equivalent to
traditional equations.

For a discrete input sequence, there is an upper limit on the frequency at
which you can get meaningful information about the periodicities in the data.
The highest frequency that can be uniquely fit to the data, called the Nyquist
frequency, equals one cycle every two successive measurements. This makes
sense because you cannot get information about the variations in the data at
frequencies higher than the sampling rate—the rate at which you measured
successive data values. For example, suppose that your data consists of daily
temperature measurements in your town; here, 1 cycle (the time between
two successive measurements) equals 1 day and the Nyquist frequency is
0.5 cycle/day. In this situation, you can only determine variations in the
temperature from one day to the next. If you want to study temperature
fluctuations during the day, you must collect the data at more frequent
intervals.

3-4

Calculating Fourier Transforms

The lowest frequency that can be uniquely fit to the data, called the
fundamental frequency, is one cycle for the entire length of the data vector.

The inverse DFT of a transformed sequence is given by:

x n
N

X k e
j k

n
N

k

N
() ()

()
= ≤ ≤

− −⎛
⎝⎜

⎞
⎠⎟

=
∑1 2 1

1

1

π
 1 n N

You use the ifft function in MATLAB to synthesize the signal from its
spectrum.

When x(n) is real, you can rewrite the synthesis equation as a sum of sine and
cosine functions with real coefficients:

x n
N

a k
k n

N
b k

k n

k

N
() () cos

()()
()sin

()()= − −⎛
⎝⎜

⎞
⎠⎟

+ − −

=
∑1 2 1 1 2 1 1

1

π π
NN

⎛
⎝⎜

⎞
⎠⎟

where

a k
b k X k

n N

()
() [()]

=
= −

≤ ≤

real[X(k)]
imag

1

Example — Calculating the FFT of a Column Vector
Consider the following column vector:

x = [4 3 7 -9 1 0 0 0]';

In this example, the length of the input sequence N = 8 . The Nyquist
frequency is 1 cycle every 2 observations, or 0.5. The index of the component
k at the Nyquist frequency is determined by setting the frequency to the
Nyquist frequency value:

f
k
N

= = − =ω
π2

1
0 5.

3-5

3 Fourier Analysis

Compute the FFT of x as follows:

y = fft(x)

MATLAB responds with the following FFT vector:

y =
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

Notice that although the input sequence x is real, y is complex. The first
element of y is the sum of the data values. The fifth element corresponds
to the contribution at the Nyquist frequency. The last three values of y
correspond to negative frequencies and, for the real sequence x, they are
complex conjugates of three components in the first half of y.

3-6

Example — Using FFT to Calculate Sunspot Periodicity

Example — Using FFT to Calculate Sunspot Periodicity
In this example, you use the MATLAB fft function to analyze the variations
in sunspot activity. You will use data collected by astronomers for almost
300 years of a quantity called the Wolfer number, which measures both the
number and the size of sunspots.

Load and plot the sunspot data:

load sunspot.dat
year = sunspot(:,1);
wolfer = sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')

Sunspot Data

3-7

3 Fourier Analysis

Take the FFT of the sunspot data:

Y = fft(wolfer);

The result of this transform is the complex vector Y. The magnitude of Y
squared is called the estimated power spectrum. A plot of the estimated power
spectrum versus frequency is called a periodogram.

Because the first component of Y, which is simply the sum of the data, has
a large magnitude, the following syntax removes it before generating the
periodogram:

N = length(Y);
Y(1) = [];
power = abs(Y(1:N/2)).^2;
nyquist = 1/2;
freq = (1:N/2)/(N/2)*nyquist;
plot(freq,power), grid on
xlabel('cycles/year')
title('Periodogram')

3-8

Example — Using FFT to Calculate Sunspot Periodicity

Periodogram of Sunspot Data

The frequency scale is in cycles/year, which is inconvenient because for
estimating the period of one cycle in years. Therefore, plot the power versus
period (where period = 1./freq) from 0 to 40 years/cycle:

period = 1./freq;
plot(period,power), axis([0 40 0 2e7]), grid on
ylabel('Power')
xlabel('Period(Years/Cycle)')

3-9

3 Fourier Analysis

Power Spectrum Versus Period of Sunspot Data

In order to determine the cycle more precisely, use the following syntax:

[mp,index] = max(power);
period(index)

ans =
11.0769

This plot confirms the cyclical nature of sunspot activity, which reaches a
maximum about every 11 years.

3-10

Magnitude and Phase of Transformed Data

Magnitude and Phase of Transformed Data
Important information about a transformed data sequence includes its
magnitude and phase. The MATLAB functions abs and angle calculate this
information.

To try this, create a time vector t, and use this vector to create a sequence x
consisting of two sinusoids at different frequencies:

t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) + sin(2*pi*40*t);

Now use the fft function to compute the DFT of the sequence. The following
code calculates the magnitude and phase of the transformed sequence. It also
uses the abs function to obtain the magnitude of the data, the angle function
to obtain the phase information, and the unwrap function to remove phase
jumps greater than π to their 2*pi complement:

y = fft(x);
m = abs(y);
p = unwrap(angle(y));

Now create a frequency vector for the x-axis and plot the magnitude and
phase:

f = (0:length(y)-1)'*100/length(y);
subplot(2,1,1), plot(f,m),
ylabel('Abs. Magnitude'), grid on
subplot(2,1,2), plot(f,p*180/pi)
ylabel('Phase [Degrees]'), grid on
xlabel('Frequency [Hertz]')

The magnitude plot is perfectly symmetrical about the Nyquist frequency of
50 Hz. The useful information in the signal is found in the range 0 to 50 Hz.
For more information about the Nyquist frequency, see “Calculating Fourier
Transforms” on page 3-4.

3-11

3 Fourier Analysis

Magnitude and Phase Information in Transformed Data

3-12

FFT Length Versus Performance

FFT Length Versus Performance
The execution time for the fft depends on the length of the transform.

You can add a second argument to fft to specify a number of points n in
the transform:

y = fft(x,n)

With this syntax, fft pads x with 0s if it is shorter than n, or truncates it if it
is longer than n. If you do not specify n, fft defaults to the length of the input
sequence. fft is fastest for powers of 2. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or have large prime factors.

The inverse FFT function ifft also accepts a transform length argument.

3-13

3 Fourier Analysis

3-14

4

Using Time-Series Objects
and Methods

The following sections describe how to analyze time-series data using
MATLAB objects and methods.

Introduction (p. 4-2) Summarizes the MATLAB
timeseries and tscollection
objects

Time-Series Data Sample (p. 4-3) Defines a data sample for the
timeseries constructor

Example — Using Time-Series
Objects and Methods (p. 4-6)

Provides an example of creating
and performing basic operations
on timeseries and tscollection
objects

timeseries Constructor (p. 4-21) Describes the timeseries
constructor syntax and object
properties

timeseries Methods (p. 4-31) Summarizes commonly used
timeseries methods

tscollection Constructor (p. 4-36) Describes the tscollection
constructor syntax and object
properties

tscollection Methods (p. 4-39) Summarizes commonly used
tscollection methods

4 Using Time-Series Objects and Methods

Introduction
MATLAB provides methods for analyzing time-series data. These methods
operate on the following MATLAB objects:

• timeseries — Stores data and time values, as well as the metadata
information that includes units, events, data quality, and interpolation
method

• tscollection — Stores a collection of timeseries objects that share a
common time vector, convenient for performing operations on synchronized
time series with different units

In this chapter, you learn how to

• Use time-series constructors to instantiate time-series classes

• Modify object properties using set methods or dot notation

• Call time-series functions and methods

To get a quick overview of programming with timeseries and tscollection
objects, follow the steps in “Example — Using Time-Series Objects and
Methods” on page 4-6.

If you prefer to work with a graphical user interface (GUI), use MATLAB
Time Series Tools to work with time-series data. For more information about
Time Series Tools, see Chapter 5, “Using Time Series Tools”.

Note If you are new to programming with timeseries and tscollection
objects, you might want to start by working with Time Series Tools and
enabling the Record M-Code feature. This generates reusable M-code
based on the operations you perform in the GUI. For more information, see
“Generating Reusable M-Code” on page 5-6.

4-2

Time-Series Data Sample

Time-Series Data Sample
To properly understand the description of timeseries object properties and
methods in this documentation, it is important to clarify some terms related
to storing data in a timeseries object—the difference between a data value
and a data sample.

A data value is a single, scalar value recorded at a specific time. A data
sample consists of one or more values associated with a specific time in the
timeseries object. The number of data samples in a time series is the same
as the length of the time vector.

For example, consider data that consists of three sensor signals: two signals
represent the position of an object in meters, and the third represents its
velocity in meters/second.

To enter the data matrix, type the following at the MATLAB prompt:

x = [-0.2 -0.3 13;
-0.1 -0.4 15;
NaN 2.8 17;
0.5 0.3 NaN;

-0.3 -0.1 15]

The NaN value represents a missing data value. MATLAB displays the
following 5-by-3 matrix:

x=
-0.2000 -0.3000 13.0000
-0.1000 -0.4000 15.0000
NaN 2.8000 17.0000
0.5000 0.3000 NaN

-0.3000 -0.1000 15.0000

The first two columns of x contain quantities with the same units and you
can create a multivariate timeseries object to store these two time series.
For more information about creating timeseries objects, see “timeseries
Constructor Syntax” on page 4-22. The following command creates a
timeseries object ts_pos to store the position values:

ts_pos = timeseries(x(:,1:2), 1:5, 'name', 'Position')

4-3

4 Using Time-Series Objects and Methods

MATLAB responds by displaying the following properties of ts_pos:

Time Series Object: Position

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [5 2]
Data type double

The Length of the time vector, which is 5 in this example, equals the number
of data samples in the timeseries object. Find the size of the data sample in
ts_pos by typing the following at the MATLAB prompt:

getdatasamplesize(ts_pos)

ans =

1 2

Similarly, you can create a second timeseries object to store the velocity data:

ts_vel = timeseries(x(:,3), 1:5, 'name', 'Velocity');

Find the size of each data sample in ts_vel by typing the following:

getdatasamplesize(ts_vel)

ans =

1 1

Notice that ts_vel has one data value in each data sample and ts_pos has
two data values in each data sample.

4-4

Time-Series Data Sample

Note In general, when the time-series data is an M-by-N-by-P-by-...
multidimensional array with M samples, the size of each data sample is
N-by-P-by-... .

If you want to perform operations on the ts_pos and ts_vel timeseries
objects while keeping them synchronized, group them in a time-series
collection. For more information, see “tscollection Constructor Syntax” on
page 4-36.

4-5

4 Using Time-Series Objects and Methods

Example — Using Time-Series Objects and Methods
Follow the steps in this example to learn how to work with the timeseries
and tscollection functions and methods.

This example illustrates the following typical operations you perform on
time-series data:

• “Creating timeseries Objects” on page 4-6

• “Viewing timeseries Objects” on page 4-8

• “Modifying timeseries Units and Interpolation Method” on page 4-11

• “Defining Events” on page 4-12

• “Creating tscollection Objects” on page 4-12

• “Resampling a tscollection Object” on page 4-14

• “Adding a Data Sample to a tscollection Object” on page 4-15

• “Removing and Interpolating Missing Data” on page 4-16

• “Removing a timeseries from a tscollection” on page 4-18

• “Changing a Numerical Time Vector to Date Strings” on page 4-18

• “Plotting tscollection Members” on page 4-19

Creating timeseries Objects
This portion of the example illustrates how to create several timeseries
objects from an array. For more information about the timeseries object, see
“timeseries Constructor” on page 4-21.

The sample data provided with this example consists of a 24-by-3 matrix
of double values, where each column represents the hourly traffic counts
at three town intersections.

This adds the variable count to the MATLAB workspace:

%% Import the sample data
load count.dat

4-6

Example — Using Time-Series Objects and Methods

To view the count matrix, type

count

MATLAB responds by displaying the following 24-by-3 matrix:

11 11 9
7 13 11

14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
44 55 90
114 145 257
35 58 68
11 12 15
13 9 15
10 9 7

4-7

4 Using Time-Series Objects and Methods

Create three timeseries objects to store the data collected at each
intersection:

count1 = timeseries(count(:,1), 1:24,'name', 'intersection1');
count2 = timeseries(count(:,2), 1:24,'name', 'intersection2');
count3 = timeseries(count(:,3), 1:24,'name', 'intersection3');

Note In the above construction, timeseries objects have both a variable
name (e.g., count1) and an internal object name (e.g., intersection1).
The variable name is used with MATLAB functions. The object name is a
property of the object, accessed with object methods. For more information
on timeseries object properties and methods, see “timeseries Properties” on
page 4-24 and “timeseries Methods” on page 4-31.

Each time series has a time vector in units of seconds, starting at 1 second and
increasing up to 24 seconds in 1-second increments. The software assumes
this increment when you do not explicitly specify one. You will change the
time units to hours in “Modifying timeseries Units and Interpolation Method”
on page 4-11.

Note If you want to create a timeseries object that groups the three data
columns in count, use the following syntax:

count_ts = timeseries(count, 1:24,'name','traffic_counts')

This is useful when all time series have the same units and you want to keep
them synchronized during calculations.

Viewing timeseries Objects
After creating a timeseries object, as described in “Creating timeseries
Objects” on page 4-6, you can view it in either the Array Editor or Time
Series Tools.

To view a timeseries object like count1 in the Array Editor, use any one of
several methods:

4-8

Example — Using Time-Series Objects and Methods

1 Type open('count1') at the command prompt.

2 Select count1 in the Workspace Browser and click the Open selection
button .

3 Double-click count1 in the Workspace Browser.

4 Right-click count1 in the Workspace Browser and select Open selection
from the context menu.

To view count1 in Time Series Tools, right-click count1 in the Workspace
Browser and choose Open in Time Series Tools from the context menu.

When a timeseries object is opened in either the Array Editor or Time Series
Tools, it is displayed with the Time Series Editor:

4-9

4 Using Time-Series Objects and Methods

For information on using the Time Series Editor, see “Editing Data, Time,
Attributes, and Events” on page 5-33.

4-10

Example — Using Time-Series Objects and Methods

Modifying timeseries Units and Interpolation Method
After creating a timeseries object, as described in “Creating timeseries
Objects” on page 4-6, you can modify its units and interpolation method using
dot notation.

To view the current properties of count1, type

get(count1)

MATLAB responds by displaying the current property values of the count1
timeseries object:

Events: []
Name: 'intersection1'
Data: [24x1 double]
DataInfo: [1x1 tsdata.datametadata]
Time: [24x1 double]
TimeInfo: [1x1 tsdata.timemetadata]
Quality: []
QualityInfo: [1x1 tsdata.qualmetadata]
IsTimeFirst: true
TreatNaNasMissing: true

To view the current DataInfo properties, use dot notation:

count1.DataInfo

Change the data units and the default interpolation method for count1, as
follows:

count1.DataInfo.Units = 'cars';
% Specify new data units

count1.DataInfo.Interpolation = tsdata.interpolation('zoh');
% Set the interpolation method to zero-order hold

To verify that the DataInfo properties have been modified, type

count1.DataInfo

4-11

4 Using Time-Series Objects and Methods

MATLAB confirms the change by displaying

Time Series Data Meta Data Object
Unit cars
Interpolation Method zoh

Modify the time units to be 'hours' for the three time series:

count1.TimeInfo.Units = 'hours';
count2.TimeInfo.Units = 'hours';
count3.TimeInfo.Units = 'hours';

Defining Events
This portion of the example illustrates how to define events for a timeseries
object by using the tsdata.event auxiliary object. Events mark the data at
specific times. When you plot the data, event markers are displayed on the
plot. Events also provide a convenient way to synchronize multiple time series.

Use the following syntax to add two events to the data that mark the times of
the AM commute and PM commute:

%% Construct and add the first event to all time series
e1 = tsdata.event('AMCommute',8);

% Construct the first event at 8 AM
e1.Units = 'hours'; % Specify the time units of the time
count1 = addevent(count1,e1); % Add the event to count1
count2 = addevent(count2,e1); % Add the event to count2
count3 = addevent(count3,e1); % Add the event to count3
%% Construct and add the second event to all time series
e2 = tsdata.event('PMCommute',18);

% Construct the first event at 6 PM
e2.Units = 'hours'; % Specify the time units of the time
count1 = addevent(count1,e2); % Add the event to count1
count2 = addevent(count2,e2); % Add the event to count2
count3 = addevent(count3,e2); % Add the event to count3

Creating tscollection Objects
This portion of the example illustrates how to create a tscollection object.
Each individual time series in a collection is called a member. For more

4-12

Example — Using Time-Series Objects and Methods

information about the tscollection object, see “tscollection Constructor”
on page 4-36.

Note Typically, you use the tscollection object to group synchronized time
series that have different units. In this simple example, all time series have
the same units and the tscollection object does not provide an advantage
over grouping the three time series in a single timeseries object. For an
example of how to group several time series in one timeseries object, see
“Creating timeseries Objects” on page 4-6.

Use the following syntax to create a tscollection object named count_coll
and use the constructor syntax to immediately add two of the three time series
currently in the MATLAB workspace (you will add the third time series later):

tsc = tscollection({count1 count2},'name', 'count_coll')

MATLAB responds with

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:

intersection1
intersection2

Note The time vectors of the timeseries objects you are adding to the
tscollection must match.

Notice that the Name property of the timeseries objects is used to name the
collection members as intersection1 and intersection2.

Add the third timeseries object in the workspace to the tscollection by
using the following syntax:

tsc = addts(tsc, count3)

4-13

4 Using Time-Series Objects and Methods

MATLAB now lists all three members in the collection:

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:

intersection1
intersection2
intersection3

Resampling a tscollection Object
This portion of the example illustrates how to resample each member in a
tscollection using a new time vector. The resampling operation is used to
either select existing data at specific time values, or to interpolate data at
finer intervals. If the new time vector contains time values that did not exist
in the previous time vector, the new data values are calculated using the
default interpolation method you associated with the time series.

To resample the time series to include data values every 2 hours instead of
every hour and save it as a new tscollection object, enter the following
syntax:

tsc1 = resample(tsc,1:2:24)

In some cases you might need a finer sampling of information than you
currently have and it is reasonable to obtain it by interpolating data values.
For example, the following syntax interpolates values at each half-hour mark:

tsc1 = resample(tsc,1:0.5:24)

To add values at each half-hour mark, the default interpolation method of a
time series is used. For example, the new data points in intersection1 are
calculated by using the zero-order hold interpolation method, which holds the
value of the previous sample constant. You set the interpolation method for
intersection1 as described in “Modifying timeseries Units and Interpolation
Method” on page 4-11.

The new data points in intersection2 and intersection3 are calculated
using linear interpolation, which is the default method.

4-14

Example — Using Time-Series Objects and Methods

Adding a Data Sample to a tscollection Object
This portion of the example illustrates how to add a data sample to a
tscollection.

You can use the following syntax to add a data sample to the intersection1
collection member at 3.25 hours (i.e., 15 minutes after the hour):

tsc1 = addsampletocollection(tsc1,'time',3.25,...
'intersection1',5)

There are three members in the tsc1 collection, and adding a data sample
to one member adds a data sample to the other two members at 3.25 hours.
However, because you did not specify the data values for intersection2 and
intersection3 in the new sample, the missing values are represented by
NaNs for these members. To learn how to remove or interpolate missing data
values, see “Removing and Interpolating Missing Data” on page 4-16.

tsc1 Data from 2.0 to 3.5 Hours

Hours Intersection 1 Intersection 2 Intersection 3

2.0 7 13 11

2.5 7 15 15.5

3.0 14 17 20

3.25 5 NaN NaN

3.5 14 15 14.5

To view all intersection1 data (including the new sample at 3.25 hours), type

tsc1.intersection1

Similarly, to view all intersection2 data (including the new sample at 3.25
hours containing a NaN value), type

tsc1.intersection2

4-15

4 Using Time-Series Objects and Methods

Removing and Interpolating Missing Data
MATLAB uses NaNs to represent missing data in a time series. This portion of
the example illustrates how to either remove the missing data or interpolate
it by using the interpolation method you specified for that time series. In
“Adding a Data Sample to a tscollection Object” on page 4-15, you added a
new data sample to the tsc1 collection at 3.25 hours.

There are three members in the tsc1 collection, and adding a data sample
to one member adds a data sample to the other two members at 3.25 hours.
However, because you did not specify the data values for the intersection2
and intersection3 members at 3.25 hours, they currently contain missing
values that are represented by NaNs.

Removing Missing Data
You can use the following syntax to find and remove the data samples
containing NaN values in the tsc1 collection:

tsc1 = delsamplefromcollection(tsc1,'index',...
find(isnan(tsc1.intersection2.Data)));

This command searches one tscollection member at a time—in this case,
intersection2. When a missing value is located in intersection2, the data
at that time is removed from all members of the tscollection.

Note You can use the following dot-notation syntax to access the Data
property of the intersection2 member in the tsc1 collection:

tsc1.intersection2.Data

For a complete list of timeseries properties, see “timeseries Properties” on
page 4-24.

4-16

Example — Using Time-Series Objects and Methods

Interpolating Missing Data
For the sake of this example, you must reintroduce NaN values in
intersection2 and intersection3 (which you removed):

tsc1 = addsampletocollection(tsc1,'time',3.25,...
'intersection1',5);

To interpolate the missing values in tsc1 using the current time vector
(tsc1.Time), type the following syntax:

tsc1 = resample(tsc1,tsc1.Time)

This replaces the NaN values in intersection2 and intersection3 by using
linear interpolation—the default interpolation method for these time series.

Note Dot notation tsc1.Time is used to access the Time property of the tsc1
collection. For a complete list of tscollection properties, see “tscollection
Properties” on page 4-37.

To view intersection2 data after interpolation, for example, type

tsc1.intersection2

New tsc1 Data from 2.0 to 3.5 Hours

Hours Intersection 1 Intersection 2 Intersection 3

2.0 7 13 11

2.5 7 15 15.5

3.0 14 17 20

4-17

4 Using Time-Series Objects and Methods

New tsc1 Data from 2.0 to 3.5 Hours (Continued)

Hours Intersection 1 Intersection 2 Intersection 3

3.25 5 16 17.3

3.5 14 15 14.5

Removing a timeseries from a tscollection
To remove the intersection3 time series from the tscollection object
tsc1, type:

tsc1 = removets(tsc1,'intersection3')

MATLAB now lists two time series as members in the collection:

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:

intersection1
intersection2

Changing a Numerical Time Vector to Date Strings
This portion of the example illustrates how to convert the display format of
a numerical time vector to MATLAB date strings. For a complete list of the
MATLAB date-string formats supported for timeseries and tscollection
objects, see “Time Vector Format” on page 4-21.

To convert a numerical time vector to date strings, you must set the StartDate
field of the TimeInfo property. All values in the time vector are converted to
date strings using StartDate as a reference date.

For example, suppose the reference date occurs on December 25, 2004:

tsc1.TimeInfo.StartDate = 'DEC-25-2004 00:00:00';

4-18

Example — Using Time-Series Objects and Methods

To verify that the time vector now uses date strings, type the following
command to look at the sixth element of the intersection2 member:

tsc1.intersection2(6)

MATLAB responds with

Time Series Object: unnamed
Time vector characteristics

Length 1
Start date 25-Dec-2004 03:15:00
End date 25-Dec-2004 03:15:00

Data characteristics
Interpolation method linear
Size [1 1]
Data type double

Time Data Quality

25-Dec-2004 03:15:00 16

This result shows that the sixth element of intersection2 has an
interpolated data value of 16 cars at 3.25 hours (or 3:15:00).

Plotting tscollection Members
You can plot the two remaining members in the tsc1 collection by using the
following command sequence:

plot(tsc1.intersection1); hold on;
plot(tsc1.intersection2)

4-19

4 Using Time-Series Objects and Methods

Time Plot of Two Time Series in a Collection

This plot shows the two time series in the collection: intersection1 and
intesection2. intersection1 uses the zero-order hold interpolation method
and therefore has a jagged curve. In contrast, intersection2 uses a linear
interpolation method. The vertical axis is labeled as intersection2 because
this was the last time series plotted.

The filled circles on the plot indicate events, as specified in “Defining Events”
on page 4-12.

4-20

timeseries Constructor

timeseries Constructor
The MATLAB timeseries object is a variable that stores time-indexed data
and data properties in a single structure. In addition to storing the data and
time values, you can use the timeseries object to store events, descriptive
information about data and time, data quality, and the interpolation method.

This section contains the following topics:

• “Time Vector Format” on page 4-21

• “timeseries Constructor Syntax” on page 4-22

• “timeseries Properties” on page 4-24

Time Vector Format
You can specify the time vector of the timeseries object either as numerical
(double) values or as valid MATLAB date strings.

When the timeseries TimeInfo.StartDate property is empty, the numerical
Time values are measured relative to 0 (or another numerical value) in
specified units. In this case, the time vector is described as relative (that is, it
contains time values that are not associated with a specific start date).

When TimeInfo.StartDate is nonempty, the time values are date strings
measured relative to StartDate in specified units. In this case, the
time vector is described as absolute (that is, it contains time values that
are associated with a specific calendar date). For more information, see
“timeseries Properties” on page 4-24.

MATLAB supports the following date-string formats for time-series
applications.

Date-String Format Usage Example

dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17

dd-mmm-yyyy 01-Mar-2000

mm/dd/yy 03/01/00

mm/dd 03/01

4-21

4 Using Time-Series Objects and Methods

Date-String Format Usage Example

HH:MM:SS 15:45:17

HH:MM:SS PM 3:45:17 PM

HH:MM 15:45

HH:MM PM 3:45 PM

mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17

mmm.dd,yyyy Mar.01,2000

mm/dd/yyyy 03/01/2000

For an example of how to represent a numerical time vector relative to
calendar dates, see “Changing a Numerical Time Vector to Date Strings”
on page 4-18.

timeseries Constructor Syntax
Before implementing the various MATLAB functions and methods specifically
designed to handle time-series data, you must create a timeseries object
to store the data.

The following table summarizes the syntax when using the timeseries
constructor. For an example of using the constructor, see “Creating timeseries
Objects” on page 4-6.

timeseries Syntax Descriptions

Syntax Description

ts = timeseries Creates an empty timeseries
object. The size of this object is
0-by-1.

4-22

timeseries Constructor

timeseries Syntax Descriptions (Continued)

Syntax Description

ts = timeseries(Data) Creates a timeseries object with
the specified Data.

ts has a default time vector
ranging from 0 to N-1 with 1-second
increments, where N is the number
of samples. The default name of the
timeseries object is 'unnamed'.

ts = timeseries('Name') Creates an empty timeseries
object with the name specified
by a string Name. This name can
differ from the timeseries variable
name.

ts = timeseries(Data,Time) Creates a timeseries object with
the specified Data array and Time.

When time values are date strings,
you must specify Time as a cell
array of date strings.

4-23

4 Using Time-Series Objects and Methods

timeseries Syntax Descriptions (Continued)

Syntax Description

ts =
timeseries(Data,Time,Quality)

The Quality attribute is an integer
vector containing values -128
to 127 that specifies the quality
in terms of codes defined by
QualityInfo.Code.

For more information about
QualityInfo, see “timeseries
Properties” on page 4-24.

ts = timeseries(Data,...,
'Parameter',Value,...)

Optionally enter the following
parameter-value pairs after
the Data, Time, and Quality
arguments. You can specify the
following parameters:

• Name

• IsTimeFirst

• IsDatenum

Name and IsTimeFirst are
described in “timeseries Properties”
on page 4-24.

When set to true, IsDatenum
specifies that Time values are dates
in the format of MATLAB serial
dates.

timeseries Properties
The following table lists the properties of the timeseries object. You can
specify the Data, IsTimeFirst, Name, Quality, and Time properties as input
arguments in the constructor. To assign other properties, use the set function
or dot notation.

4-24

timeseries Constructor

Note To get property information from the command line, type help
timeseries/tsprops at the MATLAB prompt.

For an example of editing timeseries object properties, see “Modifying
timeseries Units and Interpolation Method” on page 4-11.

timeseries Property Descriptions

Property Description

Data Time-series data, where each data sample
corresponds to a specific time.

The data can be a scalar, a vector, or a
multidimensional array. Either the first or last
dimension of the data must align with Time.

By default, NaNs represent missing or unspecified
data. Set the TreatNaNasMissing property
to determine how missing data is treated in
calculations.

4-25

4 Using Time-Series Objects and Methods

timeseries Property Descriptions (Continued)

Property Description

DataInfo Contains fields for storing contextual information
about Data:

• Unit — String that specifies data units.

• Interpolation — A tsdata.interpolation
object that specifies the interpolation method for
this time series.

Fields in the tsdata.interpolation object
include:

- Fhandle: Function handle to a user-defined
interpolation function.

- Name: String that specifies the name of the
interpolation method. Predefined interpolation
methods include 'linear' and 'zoh'
(zero-order hold). 'linear' is the default.

• UserData — Any user-defined information
entered as a string.

4-26

timeseries Constructor

timeseries Property Descriptions (Continued)

Property Description

Events An array of tsdata.event objects that stores event
information for this timeseries object. You add
events using the addevent method.

Fields in the tsdata.event object include the
following:

• EventData — Any user-defined information about
the event

• Name — String that specifies the name of the event

• Time — Time value when this event occurs,
specified as a real number or a date string relative
to StartDate

• Units — Time units

• StartDate — A reference date specified in
MATLAB date-string format. StartDate is empty
when you have a numerical (nondate-string) time
vector.

4-27

4 Using Time-Series Objects and Methods

timeseries Property Descriptions (Continued)

Property Description

IsTimeFirst Logical value (true or false) that specifies whether
the first or last dimension of the Data array aligns
with the time vector.

You can set this property when the Data array is
square and it is ambiguous which dimension aligns
with time. By default, the first Data dimension that
matches the length of the time vector is aligned with
Time.

When you set this property to

• true, the first dimension of the data array is
aligned with the time vector.

• false, the last dimension of the data array is
aligned with the time vector.

After a time series is created, this property is
read-only.

Name timeseries object name entered as a string. This
name can differ from the name of the timeseries
variable in the MATLAB workspace.

Quality An integer vector or array containing values -128
to 127 that specifies the quality in terms of codes
defined by the QualityInfo.Code field.

When Quality is a vector, it must have the same
length as the time vector. In this case, each Quality
value applies to the corresponding data sample.

When Quality is an array, it must have the same
size as the data array. In this case, each Quality
value applies to the corresponding value of the data
array.

4-28

timeseries Constructor

timeseries Property Descriptions (Continued)

Property Description

QualityInfo Provides a lookup table that converts numerical
Quality codes to readable descriptions.
QualityInfo fields include the following:

• Code — Integer vector containing values -128 to
127 that defines the “dictionary” of quality codes,
which you can assign to each Data value by using
the Quality property

• Description — Cell vector of strings, where each
element provides a readable description of the
associated quality Code

• UserData — Stores any additional user-defined
information

The length of Code and Description must match.

Time Vector of time values.

When TimeInfo.StartDate is empty, the numerical
Time values are measured relative to 0 in specified
units. When TimeInfo.StartDate is defined, the
time values are date strings measured relative to
StartDate in specified units.

The length of Time must match either the first or
the last dimension of Data.

4-29

4 Using Time-Series Objects and Methods

timeseries Property Descriptions (Continued)

Property Description

TimeInfo Uses the following fields to store contextual
information about Time:

• Units — Time units with the following
values: 'weeks', 'days', 'hours', 'minutes',
'seconds', 'milliseconds', 'microseconds',
and 'nanoseconds'

• Start — Start time

• End — End time (read-only)

• Increment — Interval between two subsequent
time values

• Length — Length of the time vector (read-only)

• Format — String defining the date string display
format. See the MATLAB datestr function
reference page for more information.

• StartDate — Date string defining the
reference date. See the MATLAB setabstime
(timeseries) function reference page for more
information.

• UserData — Stores any additional user-defined
information

TreatNaNasMissing Logical value that specifies how to treat NaN values
in Data:

• true — (Default) Treat all NaN values as missing
data except during statistical calculations.

• false — Include NaN values in statistical
calculations, in which case NaN values are
propagated to the result.

4-30

timeseries Methods

timeseries Methods
The following method categories are available for working with timeseries
objects:

• “General Methods” on page 4-31

• “Data and Time Manipulation Methods” on page 4-39

• “Event Methods” on page 4-33

• “Arithmetic Operation Methods” on page 4-34

• “Statistical Methods” on page 4-35

General Methods
Use the following methods to query and set object properties, and plot the
data.

Methods for Querying Properties

Method Description

get (timeseries) Query timeseries object property values.

getdatasamplesize Return the size of each data sample in a
timeseries object.

getqualitydesc Return data quality descriptions based on
the Quality property values assigned to a
timeseries object.

isempty (timeseries) Evaluate to true for an empty timeseries
object.

length (timeseries) Return the length of the time vector.

plot (timeseries) Plot the timeseries object.

set (timeseries) Set timeseries property values.

4-31

4 Using Time-Series Objects and Methods

Methods for Querying Properties (Continued)

Method Description

size (timeseries) Return the size property of a timeseries
object.

tstool Open the Time Series Tools GUI.

Data and Time Manipulation Methods
Use the following methods to add or delete data samples, and manipulate
the timeseries object.

Methods for Manipulating Data and Time

Method Description

addsample Add a data sample to a timeseries object.

ctranspose
(timeseries)

Transpose a timeseries object.

delsample Delete a sample from a timeseries object.

detrend (timeseries) Subtract the mean or best-fit line and remove
all NaNs from time-series data.

filter (timeseries) Shape frequency content of time-series data
using a 1-D digital filter.

getabstime
(timeseries)

Extract a date-string time vector from a
timeseries object into a cell array.

getinterpmethod Get the interpolation method for a timeseries
object.

getsampleusingtime
(timeseries)

Extract specified data samples from an
existing timeseries object into a new
timeseries object.

idealfilter
(timeseries)

Apply an ideal pass or notch (noncausal) filter
to a timeseries object.

4-32

timeseries Methods

Methods for Manipulating Data and Time (Continued)

Method Description

resample (timeseries) Select or interpolate data in a timeseries
object using a new time vector.

setabstime
(timeseries)

Set the time values in the time vector as date
strings.

setinterpmethod Set interpolation method for a timeseries
object.

synchronize Synchronize and resample two timeseries
objects using a common time vector.

transpose (timeseries) Transpose a timeseries object.

vertcat (timeseries) Vertical concatenation for timeseries objects.

Event Methods
To construct an event object, use the constructor tsdata.event. For an
example of defining events for a time series, see “Defining Events” on page
4-12.

Methods That Define and Use Events

Method Description

addevent Add one or more events to a timeseries
object.

delevent Delete one or more events from a timeseries
object.

gettsafteratevent Create a new timeseries object by extracting
the samples from an existing time series that
occur after or at a specified event.

gettsafterevent Create a new timeseries object by extracting
the samples that occur after a specified event
from an existing time series.

4-33

4 Using Time-Series Objects and Methods

Methods That Define and Use Events (Continued)

Method Description

gettsatevent Create a new timeseries object by extracting
the samples that occur at the same time as a
specified event from an existing time series.

gettsbeforeatevent Create a new timeseries object by extracting
the samples that occur before or at a specified
event from an existing time series.

gettsbeforeevent Create a new timeseries object by extracting
the samples that occur before a specified event
from an existing time series.

gettsbetweenevents Create a new timeseries object by extracting
the samples that occur between two specified
events from an existing time series.

Arithmetic Operation Methods
Use the following operators to arithmetically combine timeseries objects.

Methods to Arithmetically Combine timeseries

Operation Description

+ Add the corresponding data values of timeseries
objects.

- Subtract the corresponding data values of
timeseries objects.

.* Element-by-element multiplication of timeseries
data.

* Matrix-multiply timeseries data.

./ Right element-by-element division of timeseries
data.

/ Right matrix division of timeseries data.

4-34

timeseries Methods

Methods to Arithmetically Combine timeseries (Continued)

Operation Description

.\ Element-by-element left-array divide of timeseries
data.

\ Left matrix division of timeseries data.

Statistical Methods
Use the following methods to calculate descriptive statistics for a timeseries
object.

Methods for Calculating Descriptive Statistics

Method Description

iqr (timeseries) Return the interquartile range of timeseries data.

max (timeseries) Return the maximum value of timeseries data.

mean (timeseries) Return the mean of timeseries data.

median
(timeseries)

Return the median of timeseries data.

min (timeseries) Return the minimum of timeseries data.

std (timeseries) Return the standard deviation of timeseries data.

sum (timeseries) Return the sum of timeseries data.

var (timeseries) Return the variance of timeseries data.

4-35

4 Using Time-Series Objects and Methods

tscollection Constructor
The MATLAB object, called tscollection, is a MATLAB variable that groups
several time series with a common time vector. The timeseries objects that
you include in the tscollection object are called members of this collection.

MATLAB provides several methods for convenient analysis and manipulation
of timeseries in a tscollection object.

tscollection Constructor Syntax
Before you implement the MATLAB methods specifically designed to operate
on a collection of timeseries objects, you must create a tscollection object
to store the data.

The following table summarizes the syntax for using the tscollection
constructor. For an example of using this constructor, see “Creating
tscollection Objects” on page 4-12.

tscollection Syntax Descriptions

Syntax Description

tsc = tscollection(ts) Creates a tscollection object tsc that
includes one or more timeseries objects.

The ts argument can be one of the
following:

• Single timeseries object in the
MATLAB workspace

• Cell array of timeseries objects in the
MATLAB workspace

The timeseries objects share the same
time vector in the tscollection.

4-36

tscollection Constructor

tscollection Syntax Descriptions (Continued)

Syntax Description

tsc = tscollection(Time) Creates an empty tscollection object
with the time vector Time.

When time values are date strings, you
must specify Time as a cell array of date
strings.

tsc = tscollection(Time,
TimeSeries, 'Parameter',
Value, ...)

Optionally enter the following
parameter-value pairs after the
Time and TimeSeries arguments:

• Name (see “tscollection Properties” on
page 4-37)

• IsDatenum

When set to true, IsDatenum specifies
that Time values are dates in the format
of MATLAB serial dates.

tscollection Properties
This table lists the properties of the tscollection object. You can specify the
Name, Time, and TimeInfo properties as input arguments in the tscollection
constructor.

tscollection Property Descriptions

Property Description

Name tscollection object name entered as a string. This
name can differ from the name of the tscollection
variable in the MATLAB workspace.

4-37

4 Using Time-Series Objects and Methods

tscollection Property Descriptions (Continued)

Property Description

Time A vector of time values.

When TimeInfo.StartDate is empty, the numerical
Time values are measured relative to 0 in specified
units. When TimeInfo.StartDate is defined, the time
values represent date strings measured relative to
StartDate in specified units.

The length of Time must match either the first or
the last dimension of the Data property of each
tscollection member.

TimeInfo Uses the following fields to store contextual information
about Time:

• Units — Time units with the following
values: 'weeks', 'days', 'hours', 'minutes',
'seconds', 'milliseconds', 'microseconds', and
'nanoseconds'

• Start — Start time

• End — End time (read-only)

• Increment — Interval between two subsequent time
values. The increment is NaN when times are not
uniformly sampled.

• Length — Length of the time vector (read-only)

• Format — String defining the date string display
format. See the MATLAB datestr function
reference page for more information.

• StartDate — Date string defining the reference
date. See the MATLAB setabstime (timeseries)
function reference page for more information.

• UserData — Stores any additional user-defined
information

4-38

tscollection Methods

tscollection Methods
The following method categories are available for working with tscollection
objects:

• “General tscollection Methods” on page 4-39

• “Data and Time Manipulation Methods” on page 4-39

General tscollection Methods
Use the following methods to query and set object properties, and plot the
data.

Methods for Querying Properties

Method Description

get (tscollection) Query tscollection object property values.

isempty (tscollection) Evaluate to true for an empty tscollection
object.

length (tscollection) Return the length of the time vector.

plot (timeseries) Plot the time series in a collection.

set (tscollection) Set tscollection property values.

size (tscollection) Return the size of a tscollection object.

tstool Open the Time Series Tools GUI.

Data and Time Manipulation Methods
Use the following methods to add or delete data samples, and manipulate the
tscollection object.

4-39

4 Using Time-Series Objects and Methods

Methods for Manipulating Data and Time

Method Description

addts Add a timeseries object to a tscollection
object.

addsampletocollection Add data samples to a tscollection object.

delsamplefromcollection Delete one or more data samples from a
tscollection object.

getabstime
(tscollection)

Extract a date-string time vector from a
tscollection object into a cell array.

getsampleusingtime
(tscollection)

Extract data samples from an existing
tscollectionobject into a new
tscollection object.

gettimeseriesnames Return a cell array of time-series names in a
tscollection object.

horzcat (tscollection) Horizontal concatenation of tscollection
objects. Combines several timeseries
objects with the same time vector into one
time-series collection.

removets Remove one or more timeseries objects
from a tscollection object.

resample (tscollection) Select or interpolate data in a tscollection
object using a new time vector.

setabstime
(tscollection)

Set the time values in the time vector of a
tscollection object as date strings.

settimeseriesnames Change the name of the selected timeseries
object in a tscollection object.

vertcat (tscollection) Vertical concatenation of tscollection
objects. Joins several tscollection objects
along the time dimension.

4-40

5

Using Time Series Tools

The following sections describe how to use the MATLAB Time Series Tools
graphical user interface (GUI) for analyzing time-series data.

Introduction (p. 5-2) Summarizes the Time Series Tools
window and workflow

Importing and Exporting Data
(p. 5-8)

Describes supported data sources
and instructions for importing and
exporting data in Time Series Tools

Plotting Time Series (p. 5-14) Describes how to work with time
plots, histograms, spectral plots,
correlation plots, and XY plots

Selecting Data for Analysis (p. 5-29) Provides instructions for selecting
data on which to focus your analysis

Editing Data, Time, Attributes, and
Events (p. 5-33)

Describes how to edit data, time,
units, interpolation method, quality
codes, and events for time series

Processing and Manipulating Time
Series (p. 5-43)

Provides instructions for processing
time series, including filtering,
interpolating, resampling, and
algebraically manipulating data

Example — Using MATLAB Time
Series Tools (p. 5-44)

Provides an example of importing,
plotting, and analyzing time series

5 Using Time Series Tools

Introduction
The Time Series Tools graphical user interface (GUI) extends the MATLAB
environment for analyzing time-series data. For an example of using Time
Series Tools, see “Example — Using MATLAB Time Series Tools” on page 5-44.

For more information about implementing MATLAB objects and methods, see
Chapter 4, “Using Time-Series Objects and Methods”.

This section contains the following topics:

• “Opening Time Series Tools” on page 5-2

• “Getting Help” on page 5-3

• “Time Series Tools Window” on page 5-3

• “Time Series Tools Workflow” on page 5-5

• “Generating Reusable M-Code” on page 5-6

Opening Time Series Tools
To open Time Series Tools, type the following at the MATLAB prompt:

tstool

You can also open Time Series Tools using the MATLAB Start button by
selecting Start > MATLAB > Time Series Tools.

For a description of the Time Series Tools GUI, see “Time Series Tools
Window” on page 5-3.

To learn how to import data into Time Series Tools, see “Importing and
Exporting Data” on page 5-8.

You can also start Time Series Tools and simultaneously import the following
kinds of objects from the MATLAB workspace:

• timeseries

• tscollection

5-2

Introduction

• Simulink® logged signals

Note You cannot import Simulink logged signals that contain a “/” in their
Name property at any point in the signal hierarchy.

Syntax for Loading Data from the MATLAB Workspace

MATLAB Object Syntax Description

timeseries tstool(tsname) tsname is the name of a
timeseries object.

tscollection tstool(tscname) tscname is the name of a
tscollection object.

Simulink logged
signals

tstool(sldata) sldata is the name of a signal
logged in a Simulink model.

Getting Help
Time Series Tools provides extensive context-sensitive help directly from
the GUI.

In the Time Series Tools window, the context-sensitive help pane is available
on the right to assist you with the primary tasks. To toggle between displaying

or hiding the help pane, click the (Help) button in the toolbar. You can
resize the help pane by dragging the vertical divider to the left or to the right.

Context-sensitive help is also available via the Help button in Time Series
Tools dialog boxes.

Time Series Tools Window
The Time Series Tools window consists of the following three areas:

• Time Series Session tree

Organizes time-series data and plots (or Views).

5-3

5 Using Time Series Tools

The Simulink Time Series node is shown only when you have installed
Simulink.

• Options and Settings pane

After you select a node in the tree, this pane displays options and settings
pertaining to the node you selected in the tree.

• Context-Sensitive Help pane

Provides information and instructions about entering the options and
settings currently shown in Time Series Tools. You can toggle between

displaying or hiding this help by clicking the button in the toolbar. You
can change the width of the help pane by dragging the vertical divider to
the left or to the right.

To learn about other help available in Time Series Tools, see “Getting Help”
on page 5-3.

The following figure shows the three main areas of the Time Series Tools GUI:

5-4

Introduction

Time Series Tools Workflow
When you analyze data using Time Series Tools, your workflow might include
the following tasks:

1 Import data from an Excel workbook, MAT-file, or MATLAB workspace.

For more information, see “Importing and Exporting Data” on page 5-8.

2 Create a time plot to gain insight into the data features.

For more information, see “Creating a Plot” on page 5-15.

5-5

5 Using Time Series Tools

3 Select data subset for analysis.

For more information, see “Selecting Data for Analysis” on page 5-29.

4 Edit the data by

• Identifying and removing outliers or “dead time” (see “Selecting Data
Using Rules” on page 5-29).

• Manually correcting errors (see “Editing Data, Time, Attributes, and
Events” on page 5-33).

5 Process the data by

• Interpolating or removing missing values.

• Detrending data by subtracting a mean value or a linear trend.

• Filtering to smooth and shape the data.

• Algebraically manipulating existing time series to create a new time
series.

• Resampling data using a specified time vector by selecting or
interpolating values.

For more information, see “Processing and Manipulating Time Series” on
page 5-43.

6 Generating correlation plots, spectral plots, histograms, and XY plots.

For more information, see “Plotting Time Series” on page 5-14.

7 Exporting data from Time Series Tools to the MATLAB workspace or to a
file.

For more information, see “Exporting Data from Time Series Tools” on
page 5-13.

Generating Reusable M-Code
You can enable automatic generation of reusable M-code while you perform
operations that modify data in Time Series Tools. To do this, select File >
Record M Code in the Time Series Tools window.

5-6

Introduction

If you are new to programming with MATLAB timeseries methods, you
can use the generated M-code to get syntax examples. For more information
about programming with MATLAB timeseries objects, see Chapter 4, “Using
Time-Series Objects and Methods”.

For an example of automatically generating and viewing M-code, see
“Example — Using MATLAB Time Series Tools” on page 5-44.

5-7

5 Using Time Series Tools

Importing and Exporting Data
After starting Time Series Tools, as described in “Opening Time Series Tools”
on page 5-2, you can import data from a file or from the MATLAB workspace.

This section contains the following topics:

• “Types of Data You Can Import” on page 5-8

• “How to Import Data” on page 5-8

• “Changes to Data Representation During Import” on page 5-10

• “Importing Multivariate Data” on page 5-11

• “Importing Data with Missing Values” on page 5-12

• “Exporting Data from Time Series Tools” on page 5-13

Types of Data You Can Import
You can import data into Time Series Tools from

• A Microsoft Excel workbook, a text file, or a MAT-file.

• An array in the MATLAB workspace.

• A timeseries or tscollection object in the MATLAB workspace.

For more information about creating these objects, see Chapter 4, “Using
Time-Series Objects and Methods”.

• Simulink logged-signal data from a Simulink model.

Note You cannot import a timeseries or tscollection object from a
MAT-file.

How to Import Data
This section includes the following topics:

• “Importing timeseries and tscollection objects” on page 5-9

• “Importing data from external files” on page 5-9

5-8

Importing and Exporting Data

• “Using the Import Wizard” on page 5-9

Importing timeseries and tscollection objects
If you have already encapsulated time series data in a timeseries or
tscollection object in the MATLAB workspace, you can open Time Series
Tools and import the data in a single operation. Simply right-click the object
name in the Workspace Browser and choose Open in Time Series Tools
from the context menu.

Importing data from external files
Once you have opened Time Series Tools, use the following commands to
import data from external files. Each command opens a dialog box. You can
get detailed information about options by clicking Help.

Data Source Import Command

Microsoft Excel worksheet
(.xls)

Select File > Create Time Series from
File to open the Import Wizard.

Text file (.csv, .txt, .dat) Select File > Create Time Series from
File to open the Import Wizard.

MAT-file array (.mat) Select File > Create Time Series from
File to open the Import Wizard.

MATLAB workspace array Select File > Import from Workspace >
Array Data to open the Import Wizard.

timeseries or tscollection
object in the MATLAB
workspace

Select File > Import from Workspace >
Time Series Objects or Collections.

Simulink logged signal Select File > Import from Workspace >
Simulink Data Logs.

Using the Import Wizard
When in Time Series Tools, you import data from the MATLAB workspace or
an external file using the Import Wizard. The Import Wizard lets you select
the data to import when analyzing a portion of an Excel worksheet or specific
columns or rows in a MATLAB array.

5-9

5 Using Time Series Tools

After you select the data, you can specify to import time values from a file or
define a uniformly spaced time vector in the Import Wizard. For an example
of importing data from an Excel worksheet, see “Importing Data into Time
Series Tools” on page 5-45.

Each time series you import is added as a data node to the Time Series
Session tree.

Note The Import Wizard in Time Series Tools imports data as timeseries
objects. This is different from the Import Wizard you access from the MATLAB
Command Window, which imports data as MATLAB vectors and matrices.

For instructions about working with the Import Wizard, click Help in the
Import Wizard window. You can also get help on specific fields in the Wizard
as follows:

1 Right-click the text label of a field for which you want to get help.

2 Select What’s This from the shortcut menu.

Changes to Data Representation During Import
When you import data into Time Series Tools, a copy of the data is imported
without affecting the original data source.

The data copy is changed during import, as follows:

• Rowwise data is transposed to become columnwise with the time vector
in the first column.

• Data with more than two dimensions is reshaped to two dimensions such
that dimensions three and higher become additional columns. For example,
a 2-by-3-by-5 data array becomes a 2-by-15 data array.

• Non-double data, such as int, logical, and fixed-point, is converted to
double.

• Missing data values are replaced by NaNs.

• A sparse matrix is converted to a full matrix.

5-10

Importing and Exporting Data

Caution When you export data from Time Series Tools to a file or to the
MATLAB workspace, please note that its representation might differ from
what you imported into Time Series Tools. For more information about
exporting data, see “Exporting Data from Time Series Tools” on page 5-13.

Importing Multivariate Data
When your data consists of several related variables measured at the same
time, you might want to group this data so that you can plot variables together
or perform calculations on all variables simultaneously.

There are two ways to represent multivariate data in Time Series Tools:

• Create a time-series collection with a common time vector, where each time
series is a member of the collection.

• Import a data array into a single timeseries object, where each time
series is stored as a column.

Choosing How to Represent Multivariate Data
How you choose to represent your data depends on whether the variables have
the same or different units.

When your data contains different measurements of the same quantity (same
units), you can store all measurements as separate columns in a single time
series. Plotting such a time series displays all columns on the same axes and
distinguishes the data sets by line and marker styles. For more information,
see “Customizing Line and Marker Styles” on page 5-16.

When your data contains different quantities, measured in different units,
you might want to distinguish these quantities on plots and during analysis.
In this case, we recommend that you store each quantity as a separate time
series and then group them into a time-series collection. For example, if you
are working with stock-price data in a portfolio, you might represent each
stock as a separate time series and group them in a collection. When you plot
this collection, each member is plotted on separate axes. However, when
you perform data-analysis operations on the collection, such as filtering or

5-11

5 Using Time Series Tools

interpolation, these operations are applied to all time series in the collection
simultaneously.

Creating a Time-Series Collection
You can create a time-series collection in the MATLAB Command Window, as
described in Chapter 4, “Using Time-Series Objects and Methods”, and then
import the collection into Time Series Tools. Alternatively, you can use the
Import Wizard to facilitate creating the timeseries objects and then group
them into a collection in the MATLAB Command Window.

The following procedure describes one way to create a time-series collection
using data from a file.

Note At each step, you can click the Help button in the GUI to access
context-sensitive help.

1 To import each variable in the Microsoft Excel worksheet or MATLAB
array as a separate time series in Time Series Tools, select File > Import
from Workspace > Array Data. This opens the Import Wizard.

2 After importing the data, select the Time Series node in the tree and
export these time series to the MATLAB workspace.

3 In the MATLAB Command Window, combine individual time series into
a time-series collection object. For an example of creating a time-series
collection, see “Creating tscollection Objects” on page 4-12.

4 In Time Series Tools, select File > Import from Workspace > Time
Series Objects or Collections and import the collection from the
MATLAB workspace.

Importing Data with Missing Values
When you import data from a Microsoft Excel worksheet into Time Series
Tools that contains missing values, the missing data is automatically replaced
with NaNs. NaNs are ignored in Time Series Tools calculations.

To remove or interpolate missing values:

5-12

Importing and Exporting Data

1 Select a time series or a collection in the Time Series Session tree
containing missing values.

2 Select Data > Interpolate or Data > Remove Missing Data, depending
on the operation you want to perform. This opens the Process Data dialog
box.

3 Click Help to access context-sensitive help on specific options in the dialog
box.

Exporting Data from Time Series Tools
Importing data into Time Series Tools creates a copy of the original data.
After you finish analyzing the data in Time Series Tools, you must export it to
a file or to the MATLAB workspace to make it available for other processing
in MATLAB.

To export a time series or a collection, select the desired node in the Time
Series Session tree. Then, do one of the following:

• Export to a file (Microsoft Excel worksheet or MAT-file):

Select File > Export > To File.

When you export a time series collection, the individual time series are
extracted into separate Microsoft Excel worksheets.

• Export to the MATLAB workspace:

Select File > Export > To Workspace.

5-13

5 Using Time Series Tools

Plotting Time Series
This section contains the following topics:

• “Types of Plots in Time Series Tools” on page 5-14

• “Creating a Plot” on page 5-15

• “Customizing Line and Marker Styles” on page 5-16

• “Editing Plot Appearance” on page 5-16

• “Time Plots” on page 5-18

• “Spectral Plots” on page 5-19

• “Histograms” on page 5-21

• “Correlation Plots” on page 5-22

• “XY Plots” on page 5-27

Types of Plots in Time Series Tools
You can generate the following types of plots in Time Series Tools.

Plot Type Description

Time Plot Plots data as a function of time to help you see
important features, such as outliers, discontinuities,
trends, and periodicities.

Histogram Plots the number of data values that occur in
specified data ranges, called bins.

Spectral Plot Shows data periodicities by plotting the estimated
power spectral density as a function of frequency.

Correlation Plot Shows the autocorrelation of a time series or
crosscorrelation between two time series.

XY Plot Shows the relationship between two time series by
plotting the data values of one on the x-axis and the
data values of the other on the y-axis.

5-14

Plotting Time Series

Creating a Plot
You can create a plot in Time Series Tools is by dragging and dropping a Time
Series data node in the Time Series Session tree onto a Views node.

The following figure shows an example of how to create a spectral plot by
dragging the onboard time series onto the Spectral Plots node:

This opens the spectral plot in the Time Series Plots window and adds a tree
node under Spectral Plots. The Time Series Plots window is similar to the
MATLAB Figure window but includes additional commands in the toolbar
and the Tools menu.

Tip To change the default plot name, right-click the plot node and select
Rename and enter the new name.

Subplots. To create subplots in a single figure window, drag several time
series onto the same plot node. If a time series contains several columns
of data, all data columns are plotted on the same axes. See “Editing Plot
Appearance” on page 5-16 for information on interactively modifying the
appearance of subplots.

5-15

5 Using Time Series Tools

XY and crosscorrelation plots. These plots require two time series. To
create these plots, drag one time series onto a plot node and then drag a
second time series onto the same plot node.

Customizing Line and Marker Styles
When you plot several time series on the same axes, or a single timeseries
object that contains multiple columns of data, you can specify how to visually
distinguish between the different sets of data in the plot.

To distinguish data by color, type of marker, or line style, select Plot > Set
Line Properties in the Time Series Tools window. This opens the Line Styles
dialog box. Click Help to learn how to work with this dialog box.

Note Your changes are applied to all open plots.

For an example of setting line styles, see “Creating a Time Plot” on page 5-47.

Editing Plot Appearance
After you create a plot, you can modify the plot appearance using the Property
Editor as follows:

• Change the range of the horizontal and vertical axes.

• Show statistical annotations on the plot, such as the mean and standard
deviation.

The kinds of statistical quantities you can display vary depending on the
type of plot.

5-16

Plotting Time Series

The following figure shows the location of the Property Editor relative to
the plot window:

To display the Property Editor for any Time Series Tools plot:

1 Select the plot in the Time Series Session tree.

2 In Time Series Tools, click the Edit Plot button. This displays the plot
window on top with the Property Editor below the plot.

3 In the Property Editor, click Help to get information about options and
settings.

5-17

5 Using Time Series Tools

Note The Property Editor options change depending on the type of plot and
the plot item you select, such as lines or plot legends.

Subplots. You can change subplot indices interactively. To do so, click on a
plotted line in a time series view and drag and drop it from one subplot to
another. To create a new subplot, drag and drop the plotted line below the
bottom axes.

Time Plots
By plotting data as a function of time, you can quickly gain insight into the
following data features:

• Outliers, or values that do not appear to be consistent with the rest of
the data

• Discontinuities

• Trends

• Periodicities

• Time intervals containing the data of interest

These features, when considered in the context of the data, enable you to
plan your analysis strategy. For more information about creating a time plot,
see “Creating a Plot” on page 5-15.

After you create the plot, you can use the Property Editor to

• Define Y-axis scale.

• Display statistical annotations on the plot, such as mean, standard
deviation (STD), and median.

• Define X-axis scale (or domain).

In the Property Editor, click Help to get information about options and
settings.

5-18

Plotting Time Series

The Time Plot window contains the following toolbar commands specific to
working with time-series data.

Time Plot Commands

Button Description

Select Data — Enables you to click and drag a rectangular
region on the time plot to select the data inside the region.

Move Time Series — Enables you to click and drag a time
series to translate a time series on the plot and recalculate
the data and time values.

When you translate a time series in time, its time vector is
shifted by a constant offset. If you had associated any events
with this time series, the events are not shifted with the time
series. For more information about editing event times, see
“Defining Events” on page 5-39.

Rescale Time Series — Rescales both axes of the time plot to
the original view.

Select Interval — Enables you to click and drag to select data
corresponding to one or more time intervals. You can select
multiple disconnected intervals.

Spectral Plots
You use a spectral plot (or periodogram) to determine the frequencies of the
periodic variations in the data and to filter the data. For more information
about creating a periodogram, see “Creating a Plot” on page 5-15.

The periodogram is the unbiased estimate of the power spectral density of a
time series, calculated as the scaled absolute value of the (FFT)2 of the time
series. The corresponding frequency vector is computed in cycles per unit time
and has the same length as the power vector. The periodogram is scaled so
that the variance equals the mean of the periodogram.

The periodogram is useful for picking out periodic components in the presence
of noise; a peak in the periodogram indicates an important contribution to
variance frequencies near the value that corresponds to the peak.

5-19

5 Using Time Series Tools

After you create the plot, you can use the Property Editor to

• Define Y-axis scale.

• Display the variance for a selected frequency range on the plot.

The periodogram is scaled so that the variance equals the mean of the
periodogram.

• Define frequency scale.

In the Property Editor, click Help to get information about options and
settings.

Filtering the Data
You can use the spectral plot to apply an ideal pass or stop filter to the data.

You use the ideal notch (stop) filter when you want to attenuate the variations
in the data for a specific frequency range. Alternatively, you use the ideal pass
filter to allow only the variations in a specific frequency range. These filters
are “ideal” in the sense that they are not realizable; an ideal filter is noncausal
and the ends of the filter amplitude are perfectly flat in the frequency domain.

To apply an ideal filter:

1 In the Spectral Plot window, click the Select Frequency Interval(s)
button in the toolbar.

2 Click and drag on the plot to select a frequency interval. The selected
interval appears in a different color.

3 Decide if you want to select another frequency interval.

• If yes, repeat step 2. The previously selected remains selected.

• If no, go to step 4.

4 Right-click a selected region on the plot and select one of the following
from the shortcut menu:

• To allow only the variations in the selected frequency range, select Pass.

• To remove the variations in the selected frequency range, select Notch.

5-20

Plotting Time Series

Histograms
The histogram plot shows the distribution of data by counting the number
of data values within a specific range of values and displaying each range as
a rectangular bin. The heights of the bins represent the numbers of values
that fall within each range. For more information about creating a histogram,
see “Creating a Plot” on page 5-15.

You can use a histogram plot to select data values that fall in a specific range
to exclude or include them in your analysis. If you want to interpolate specific
data values, you can select them in a histogram plot first, and then replace
them with NaNs. For more information, see “Removing or Replacing Data with
NaNs” on page 5-22. Then, you can interpolate all values tagged as NaNs using
the selected interpolation method. For more information about specifying an
interpolation method, see “Defining Data Attributes” on page 5-36.

Note Time Series Tools generates a histogram plot of a time series by
applying the MATLAB hist function.

After you create the plot, you can use the Property Editor to

• Define Y-axis scale.

• Display statistical annotations on the plot, including the mean and the
median.

• Define data bins.

In the Property Editor, click Help to get information about options and
settings.

Selecting Data

1 In the Histogram window, click the Select Y Range Interval button
in the toolbar.

2 Click and drag a rectangular region on the plot to select a data interval.
The selected interval appears in a different color.

5-21

5 Using Time Series Tools

3 Decide if you want to select another data range.

• If yes, repeat step 2. The previously selected remains selected.

• If no, you are done.

Removing or Replacing Data with NaNs
After you select the data, as described in “Selecting Data” on page 5-21, you
can delete it or replace it with NaNs. If you want to interpolate specific data
values, you must replace the selected data with NaNs first.

To delete data, right-click the selected region and select Remove Selection
from the shortcut menu.

To replace data with NaNs, right-click the selected region and select Replace
with NaNs from the shortcut menu.

Correlation Plots
You can create autocorrelation plots (correlograms) and crosscorrelation plots
in Time Series Tools. A correlation plot shows correlation coefficients on the
vertical axis, and lag values on the horizontal axis.

A lag is defined as the number of time steps by which a time series is shifted
relative to itself (when autocorrelated), or relative to the corresponding time
values of another time series (when crosscorrelated). Notice that a lag is not
a time shift (in specified time units). However, you can interpret a lag as a
time shift when the time series is uniformly sampled (autocorrelation), or
when both time series are uniformly sampled with the same time interval
(crosscorrelation).

This section includes the following topics:

• “Autocorrelation of a Time Series” on page 5-23

• “Crosscorrelation of Time Series” on page 5-24

• “Interpreting Correlation Plots” on page 5-26

5-22

Plotting Time Series

Note If your data is sampled at irregular time intervals, resample it on
a uniform time vector before creating correlation plots. This is because
correlation analysis only considers the number of time steps between data
values, and not the actual time elapsed between successive measurements.
For more information about resampling time series, see “Processing and
Manipulating Time Series” on page 5-43.

Autocorrelation of a Time Series
The autocorrelation function is an important diagnostic tool for analyzing time
series in the time domain. You use the autocorrelation plot, or correlogram, to
better understand the evolution of a process through time by the probability of
relationship between data values separated by a specific number of time steps.

The correlogram plots correlation coefficients on the vertical axis, and lag
values on the horizontal axis. To learn more about correlation coefficients, see
“Correlation Coefficients” on page 2-6.

To create a correlogram, drag and drop a time series into a Correlations
node. Then explore the plot by editing the lag range in the Property Editor.

If a time series contains multiple data columns, your plot contains
crosscorrelations of the various data columns. For more information, see
“Crosscorrelation of Time Series” on page 5-24.

Note A correlogram is not useful when the data contains a trend; data at all
lags will appear to be correlated because a data value on one side of the mean
tends to be followed by a large number of values on the same side of the mean.
You must remove any trend in the data before you create a correlogram. For
more information about accessing detrending functionality, see “Processing
and Manipulating Time Series” on page 5-43.

5-23

5 Using Time Series Tools

Crosscorrelation of Time Series
Crosscorrelation is a measure of the degree of the linear relationship between
two time series. A high correlation between time series at a specific lag might
indicate a time delay in the system.

Note Before creating a crosscorrelation plot, make sure that both time series
have the same uniform time vector.

To create a crosscorrelation plot, successively drag and drop the first time
series and the second time series into the same Correlations node in the
Time Series Session tree. Then explore the plot by varying the lag range in
the Property Editor.

A crosscorrelation plot of two time series, where each contains a single column
of data, shows the degree of linear relationship between the data values in
the two time series at various lags. For example, the following figure shows a
crosscorrelation plot of two time series, intersection1 and intersection2.
There is a high correlation when there is no lag in the data, as well as for lags
of about -11 and 11.

5-24

Plotting Time Series

Crosscorrelation of Two Time Series

A crosscorrelation plot of two time series, where each contains multiple data
columns, is displayed as a grid of subplots. The number of subplots equals the
number of columns of data in the first time series multiplied by the number of
columns of data in the second time series.

When you autocorrelate a time series with multiple data columns, the
resulting plot also contains subplots. The diagonal of the subplot is the
autocorrelation of a specific data column. The off-diagonal subplots are
crosscorrelation plots of the various columns. The subplot indices correspond
to the indices of the data columns being correlated. For example, the figure
below shows a correlation plot of the time series counts with three data
columns.

5-25

5 Using Time Series Tools

Crosscorrelation of Multiple Data Columns in a Time Series

Interpreting Correlation Plots
The following table describes the degree of relationship between the data
values at a given lag for various correlation values.

Correlation Value Meaning

Close to 1 There is a relationship between data
values at a specific lag: an increase
in one corresponds to an increase in
the other.

0 The variations in the data show no
relationships at this lag.

Close to -1 There is an anticorrelation between
the data values at a specific lag:
a decrease in one data value
corresponds to an increase in the
other data value.

5-26

Plotting Time Series

XY Plots
An XY plot plots the data values of one time series against the data values
of another time series at corresponding times. Any relationship between the
two time series is evident from a pattern on the plot. For example, when
the points on the XY plot form a straight line, there is a linear relationship
between the data values of the two time series plotted. The XY plot does not
show any time information.

Note To generate an XY plot, both time series must have the same time
vectors.

To create an XY plot, successively drag and drop the first time series and the
second time series into the same XY Plots node in the Time Series Session
tree.

When you are plotting two time series where each contains a single column of
data, the XY plot includes a single set of axes. The pairs of data values from
the same position in the column of data; that is, the third data point from
one column is plotted against the third data point from the other column.
For an example of generating such an XY plot, see “Comparing Data on an
XY Plot” on page 5-55.

An XY plot of two time series, where each contains one or multiple data
columns, is displayed as a grid of subplots. The number of subplots equals the
number of columns of data in the first time series multiplied by the number
of columns of data in the second time series. The subplot indices correspond
to the indices of the data columns.

The following figure shows an XY plot, where the data values in time series
count are plotted on the X-axis against the corresponding data values of
intersection1 on the Y-axis. Because count contains three data columns
and intersection1 contains one data column, the XY plot window shows
three subplots.

5-27

5 Using Time Series Tools

XY Plot Where One Time Series Contains Three Data Columns

5-28

Selecting Data for Analysis

Selecting Data for Analysis
Before beginning data analysis, you can select a subset of the data on which
to focus your analysis. First create a time plot to see which portions are
of interest and, in the time plot, select the data. For more information on
creating a time plot, see “Creating a Plot” on page 5-15.

This section contains the following topics:

• “Selecting Data Using Rules” on page 5-29 — Describes how to access a
dialog box where you create logical expressions to identify outliers and
constant values.

• “Selecting Data Graphically” on page 5-30 — Describes how to use plot
tools to select values on a plot.

• “Excluding Data from Analysis” on page 5-31 — Describes how to exclude
regions of data from analysis.

Selecting Data Using Rules
You can select data using logical expressions in the Select Data Using Rules
dialog box, which you access from a time plot. For more information about
creating a time plot, see “Creating a Plot” on page 5-15.

To open the Select Data Using Rules dialog box, right-click inside the time
plot and choose Select Data from the shortcut menu. Click Help in the
dialog box to get information about specific options.

You can define up to four kinds of data-selection conditions:

• Bounds — Upper and lower bounds for time and data values

• Outliers — Condition for detecting outliers, or data values that are outside
a specified confidence level

• MATLAB expression — A logical MATLAB expression that selects specific
data values

• Flatlines – Condition for detecting a specified number of successive data
points with a constant value

5-29

5 Using Time Series Tools

Tip To learn how to exclude data from analysis based on your selection, see
“Excluding Data from Analysis” on page 5-31.

Selecting Data Graphically
This section describes how to select data in a time plot by using the mouse. For
more information on creating a time plot, see “Creating a Plot” on page 5-15.

You can select data using two modes:

• Data mode — Enables you to select data values in a rectangular region
on the time plot.

For more information, see “Selecting Data in a Rectangular Region” on
page 5-30.

• Time mode — Enables you to select data values in one or more time
intervals on the time plot.

For more information, see “Selecting Data in a Time Interval” on page 5-31.

Tip To learn how you can select specific data values in a histogram plot,
see “Selecting Data” on page 5-21.

Selecting Data in a Rectangular Region

1 In the Time Plot window, click the Select Data button in the toolbar.

2 Click and drag a rectangular region on the plot that encloses the data you
want to select.

The data values are selected when you release the mouse button.

5-30

Selecting Data for Analysis

3 Decide if you want to select another region.

• If yes, repeat step 2. This does not clear the previous selection.

• If no, you can continue by excluding data from analysis (see “Excluding
Data from Analysis” on page 5-31).

Selecting Data in a Time Interval

1 In the Time Plot window, click the Select Time Interval(s) button in
the toolbar.

2 Click the start of a region that encloses the time interval where you want
to select data, and then drag it. The selected time interval appears in
a different color.

3 Decide if you want to select another time interval.

• If yes, repeat step 2. This does not clear the previous selection.

• If no, you can continue by excluding data from analysis (see “Excluding
Data from Analysis” on page 5-31).

Excluding Data from Analysis
After you select the data, you can either exclude or keep the selected values.
The following table summarizes how to do this.

5-31

5 Using Time Series Tools

Task Operation

Exclude selected data from analysis Right-click the selected data in
the time plot and select Remove
Observations from the shortcut
menu.

When there are multiple data
columns in a single time series, this
removes the entire data sample at
that time.

Exclude unselected data from
analysis

Right-click the selected data in
the time plot and select Keep
Observations from the shortcut
menu.

5-32

Editing Data, Time, Attributes, and Events

Editing Data, Time, Attributes, and Events
After importing data into Time Series Tools, you can edit specific data and
time values. In addition, you can specify descriptive information for your time
series (metadata), including the interpolation method, data quality, units,
and events.

This section contains the following topics:

• “Displaying the Data Table” on page 5-33

• “Editing Data and Time” on page 5-34

• “Defining Data Attributes” on page 5-36

• “Assigning Quality Codes to Data” on page 5-38

• “Defining Events” on page 5-39

Displaying the Data Table
To display the time series in an editable table, select the time-series node in
the Time Series Session tree.

In the following figure, the time series intersection1 is selected in the tree
and its data table is shown on the right. The Time column contains time
values and the intersection1:1 column contains the corresponding data
values in the first column and only data column of intersection1.

If intersection1 had multiple data columns, they would appear in the
table and numbered as intersection1:2, intersection1:3, and so on. The
data column headers are also used as plot labels to distinguish time series in
plots. For more information about creating plots, see “Plotting Time Series”
on page 5-14.

5-33

5 Using Time Series Tools

Note To toggle between displaying and hiding the help pane in Time Series

Tools, click the button in the toolbar.

Editing Data and Time
After you display the time-series data, as described in “Displaying the Data
Table” on page 5-33, you can edit specific data and time values, define a
uniform time vector, and add or remove data samples.

5-34

Editing Data, Time, Attributes, and Events

Edit Time or Data Values
To edit a specific time or data value, double-click that cell in the table and
enter the new value. Press Enter.

Note When entering time values, you must use the current display format of
your time vector. For more information, see “Time Vector Format” on page
4-21.

Define a Uniform Time Vector
To define a uniformly-increasing time vector, click Uniform Time Vector
below the data table. This opens the Define Uniform Time Vector dialog box.

Here, you specify the start and end time of the time vector, the time units, and
the display format. The time interval is calculated automatically by dividing
the total time range by the number of data samples. You can get more
instructions by clicking Help in the Define Uniform Time Vector dialog box.

When you are done specifying the time vector, the new time values replace the
previous time values in the data table.

Add Data Samples
To insert a row in the data table, click any cell in a row and click the Add
Row button. Enter the time and the corresponding data values.

Delete Data Samples
To delete a row in the data table, select one or more rows with the mouse
and click the Delete Row(s) button.

5-35

5 Using Time Series Tools

Defining Data Attributes
The following attributes are defined for time series:

• Units — Stored as metadata for each time series.

• Interpolation method — Default method used to fill in missing data or to
resample data on a new time vector.

• Quality codes — Used to annotate the quality of each value in the data
table.

Click the Attributes button below the data table to open the Define Data
Attributes dialog box. For information about displaying the data table, see
“Displaying the Data Table” on page 5-33.

Units and Interpolation Method
Data units are stored as metadata for the currently selected time series. If
this time series contains multiple data columns, all data is assigned the
same units.

In the Units & Interpolation tab, enter a string in the Data units field. For
example, enter N/m^2.

The interpolation method you select here is used by default for this time
series to fill in missing data or to resample the data on a new time vector.

In the Units & Interpolation tab, select one of the following Interpolation
methods:

• Linear — A 1-D interpolation method that implements the MATLAB
function interp1 to fit a straight line between a pair of existing data points
to calculate the missing value.

• Zero-order hold — Calculates the missing value by setting it equal to the
last available data value. In other words, this methods “holds” the last
value constant until the next available measurement.

5-36

Editing Data, Time, Attributes, and Events

Quality Codes
You can define quality codes to annotate the quality of each value in the
data table. Each quality attribute consists of a numerical code and a brief
description. For information about assigning quality codes to specific data
values, see “Assigning Quality Codes to Data” on page 5-38.

Tip To save time, first define the quality attribute that applies to most of your
data values. It is automatically assigned to all data values. Then, define the
attributes that occur less frequently and set them manually in the Quality
column of the data table.

1 In the Define Data Attributes dialog box, click the Quality Codes tab.

2 Click the Add Code button. This adds an empty row in the Quality Codes
table.

3 Click the empty cell in the Code column and type an integer from 0 to 127.

4 Press the Tab key. This highlights the cell in the Description. Type one
or two words that briefly describe the numerical code, such as Validated.

5-37

5 Using Time Series Tools

5 To add another quality code, repeat steps 2 to 4. Or click OK to close the
dialog box. This also assigns the first quality code you defined to all data
values in the table.

The following figure shows two quality codes: Validated and Not validated.

Note To delete a quality attribute, select it and click Delete Code.

Assigning Quality Codes to Data
After you define quality codes, as described in “Quality Codes” on page
5-37, the quality code you defined first is automatically assigned to all data
values in the data table. For information about displaying the data table, see
“Displaying the Data Table” on page 5-33.

To assign a different quality code to a specific data value, click the
corresponding cell in the Quality column and select a different value from
the drop-down list.

5-38

Editing Data, Time, Attributes, and Events

Defining Events
Events are stored as metadata for each time series. Time series events mark
the data at a specific time in the data table and on a plot. For information
about displaying the data table, see “Displaying the Data Table” on page 5-33.

You can also use events as reference points when shifting time series in time.
For more information about synchronizing time series, see “Processing and
Manipulating Time Series” on page 5-43.

To define events for the selected time series:

1 Make sure that the Show event table check box is selected. This check
box is located below the data table:

5-39

5 Using Time Series Tools

2 Click the Add event button below the event table. This opens the Define
New Event dialog box.

3 In the Name field, enter the name of the event, such as AMCommute.

4 In the Time/Date field, enter or edit the time of the event in the
appropriate display format. For information about time-vector formats, see
“Time Vector Format” on page 4-21.

5-40

Editing Data, Time, Attributes, and Events

Tip To facilitate entering a date string, click the (Browse) button to
open the Specify Date/Time dialog box. Select the month, year, and day.
Then enter the Time in HH:MM:SS format.

5 Click OK.

The following figure shows two events in the event table: AMCommute and
PMCommute. The data table also contains both events and AMCommute is
shown at 6.0 hours.

Events are displayed as markers on time-series plots. The following figure
shows the AMCommute marker (at 6.0 hours) and PMCommute marker (at
18.0 hours) on a time plot.

5-41

5 Using Time Series Tools

Time Plot with Event Markers

5-42

Processing and Manipulating Time Series

Processing and Manipulating Time Series
The following table summarizes the operations you can perform on individual
time series or time-series collection. These commands are available from the
Data menu in Time Series Tools after you select a time series or collection
node in the Time Series Session tree.

Note If you are viewing a time plot, these operations are available by
right-clicking inside the time plot and selecting a command from the shortcut
menu. For more information about plotting data, see “Plotting Time Series”
on page 5-14.

Each command opens a dialog box where you can get detailed instructions
by clicking the Help button.

Data Analysis Commands

Command Description

Data > Remove
Missing Data

Delete the times that contain missing data.

Data > Detrend Subtract a constant or a linear trend from the
data.

Data > Filter Smooth and shape the time-series data.

Data > Interpolate Interpolate missing values.

Data > Resample Select or interpolate data values using a specified
time vector.

Data > Transform
Algebraically

Create a new time series by algebraically
manipulating existing time series.

This command is available only when you select
an individual time series in the tree.

Data > Descriptive
Statistics

Get summary statistics for each time series.

5-43

5 Using Time Series Tools

Example — Using MATLAB Time Series Tools
This example illustrates how to perform the following tasks using Time
Series Tools:

• “Loading Data into the MATLAB Workspace” on page 5-44

• “Starting Time Series Tools” on page 5-44

• “Enabling M-Code Generation” on page 5-44

• “Importing Data into Time Series Tools” on page 5-45

• “Creating a Time Plot” on page 5-47

• “Resampling Time Series” on page 5-53

• “Comparing Data on an XY Plot” on page 5-55

• “Viewing Generated M Code” on page 5-57

• “Exporting Time Series to the Workspace” on page 5-59

Loading Data into the MATLAB Workspace
Type the following command at the MATLAB prompt to load the hourly traffic
counts at three road intersections, collected over a 24-hour period:

load count.dat

This adds the variable count to the MATLAB workspace.

Starting Time Series Tools
To start Time Series Tools, type

tstool

This opens the Time Series Tools window. For more information about this
GUI, see “Time Series Tools Window” on page 5-3.

Enabling M-Code Generation
In this portion of the example, you will enable automatic M-code generation in
Time Series Tools to capture reusable M-code as a MATLAB function.

5-44

Example — Using MATLAB Time Series Tools

1 In the Time Series Tools window, select File > Record M Code. This
opens the Record M Code dialog box.

2 Click the button and select the folder where you want to store the
M-file.

3 In the Log file name field, either select the name of a recently used file,
or type a new name. The file name creates the function name you call in
your M-code to reuse this function.

4 To begin capturing M code, click Record. The M code is recorded until you
stop recording, as described in “Viewing Generated M Code” on page 5-57.

Tip You can close this dialog box without interrupting the recording operation
by clicking Close. To reopen the dialog box, select File > Record M Code in
the Time Series Tools window.

Importing Data into Time Series Tools
This portion of the example shows how to create three time series from the
24-by-3 count array you loaded into the MATLAB workspace.

Note To get help on a specific field in the Import Wizard, right-click the field
label and select What’s This from the shortcut menu.

1 In the Time Series Tools window, select File > Import from Workspace
> Array Data. This opens the Import Wizard.

5-45

5 Using Time Series Tools

2 In the Import from list, select MATLAB workspace and click Next.

3 In Step 2 of the Import Wizard, select the count variable. The Import
Wizard infers from the data that it is arranged in columns.

4 In the Specify Time Vector area, select hours from the Units list. In the
Start Time field, type 1 to start the time vector at 1 hour. The Import
Wizard has already filled in the remaining options to define a uniformly
spaced time vector with a length of 24 and an interval of 1.

5-46

Example — Using MATLAB Time Series Tools

5 Click Next.

6 In Step 3 of the Import Wizard, select Create several time series
using: common name+number. In the Enter common name field, type
intersection.

7 Click Finish. This adds three time series to the Time Series Session tree:
intersection1, intersection2, and intersection3 (as shown below).

Creating a Time Plot
To explore the data, you can create a time plot of the three time series in the
Time Series Tools window.

5-47

5 Using Time Series Tools

1 In the Time Series Session tree, drag and drop the intersection1 time
series into the Time Plots node. This creates a time plot in a new window
with the default name View1.

5-48

Example — Using MATLAB Time Series Tools

2 In the Time Series Session tree, drag and drop the intersection2 and
intersection3 time series into View1 to add them to the plot.

3 To change the appearance of the time series in the plot, select Plot > Set
Line Properties. This opens the Line Styles dialog box.

5-49

5 Using Time Series Tools

4 To display all three time series on the same axes, click the View1
node in the Time Series Tools window. Change the subplot indices for
intersection2 and intersection3 to [1] and press Enter.

5-50

Example — Using MATLAB Time Series Tools

This displays all time series on the same axes, as follows:

5 In the Line Styles dialog box, click Line Style to distinguish the time
series, shown as follows.

5-51

5 Using Time Series Tools

The plot now looks like this.

5-52

Example — Using MATLAB Time Series Tools

Resampling Time Series
You can select or interpolate time-series data using a specified time vector.
When the new time vector contains time values that are not present in
the original time vector, the intermediate data values are calculated using
the interpolation method you associated with this time series. Linear
interpolation is used by default. For more information about specifying the
interpolation method, see “Defining Data Attributes” on page 5-36.

This portion of the example shows

• “Resampling on a Uniform Time Vector” on page 5-53

• “Resampling by Finding a Common Time Vector” on page 5-55

Note You can only resample one time series at a time.

Resampling on a Uniform Time Vector
First, you resample the time series intersection1 to include values every
2 hours.

5-53

5 Using Time Series Tools

1 Right-click inside the time plot you created in “Creating a Time Plot” on
page 5-47 and select Resample Data from the shortcut menu. This opens
the Resample Data dialog box.

2 In the Define Time Series area, select only intersection1 and clear
the rest.

3 In the Specify New Time Vector area, click Uniform time vector with
time interval and specify the time interval as 2 hours. Click OK.

Tip To verify that intersection1 is resampled, select it in the Time Series
Session tree and examine the data table. It should have a time vector that
starts at 1 hour and increases in increments of 2 hours.

5-54

Example — Using MATLAB Time Series Tools

Resampling by Finding a Common Time Vector
In some cases, you might want one time series to have the same time vector as
another time series on the overlapping region of time values. This is especially
useful when you want a specific time series to inherit a nonuniformly spaced
time vector.

In this example, you resample intersection2 on the same time vector as
intersection1.

1 Right-click inside the time plot you created in “Creating a Time Plot” on
page 5-47 and select Resample Data from the shortcut menu. This opens
the Resample Data dialog box.

2 In the Define Time Series area, select only intersection2 and clear
the rest.

3 In the Specify New Time Vector area, click Use time vector from time
series and select intersection1 from the list. Click OK.

To verify that intersection2 is resampled, select it in the Time Series
Session tree and examine the data table. It should have a time vector that
starts at 1 hour and increases in increments of 2 hours.

Comparing Data on an XY Plot
The XY plot is useful for visually determining a relationship between the data
values of time series at corresponding times. For example, when the points
on an XY plot form a straight line, there is a linear relationship between the
two time series.

In this portion of the example, you examine the relationship between the
corresponding data values of intersection1 and intersection2 by using
an XY plot.

1 In the Time Series Session tree, drag and drop the intersection1 time
series into the XY Plots node. This creates a new plot node with the
default name View2.

5-55

5 Using Time Series Tools

2 Drag and drop the intersection2 time series into the View2 node. This
creates the following XY plot.

5-56

Example — Using MATLAB Time Series Tools

3 To show the best-fit line on the XY plot, click the Define Statistical
Annotations tab in the Property Editor and select the Best fit line check
box. Then, click the line to display the line equation on the plot.

Viewing Generated M Code
You can now view the M code that Time Series Tools generated while you
performed the previous steps in this example.

To view the M-file:

1 In the Time Series Tools window, select File > Record M Code to open the
Record M Code dialog box.

2 Click Stop to open the M-file with the generated M code in the MATLAB
Editor.

5-57

5 Using Time Series Tools

Automatically Generated M Code

You can reuse this M code by calling the tstoollog function, which has the
same name as this M-file. You specified the file name when you enabled
M-code generation in this example, as described in “Enabling M-Code
Generation” on page 5-44.

Examine the code of the tstoollog function to confirm that it takes two time
series as input arguments and resamples them using a uniform time vector
with the range 1 to 24 and intervals of 2.

Note The generated M-file contains only syntax for manipulating the data
in Time Series Tools. It does not contain the commands for generating and
editing the plots.

5-58

Example — Using MATLAB Time Series Tools

Exporting Time Series to the Workspace
You can export individual time series, as well as time series collections, from
Time Series Tools to the MATLAB workspace. You can also export time series
to a Microsoft Excel worksheet or a MAT-file.

In this portion of the example, you will export the time series intersection1
as a variable to the MATLAB workspace. This time series differs from
the original data you imported into Time Series Tools because it has been
resampled, as described in “Resampling Time Series” on page 5-53.

1 Click the interesection1 node in the Time Series Session tree to select it.

2 Select File > Export > To Workspace. The variable intersection1 is
now listed in the MATLAB workspace.

Note If the MATLAB workspace is hidden, select Desktop > Workspace
from the MATLAB window to display it.

5-59

5 Using Time Series Tools

5-60

Index

A
attributes of time series 5-33
autocorrelation of time series 5-23

B
Basic Fitting dialog box 2-8

usage example 2-10

C
confidence bounds 2-34
correlation analysis 2-4
correlation coefficients 2-6
correlation plots 5-22

interpreting 5-26
covariance 2-4
crosscorrelation of time series 5-24
curve fitting, see data fitting
Curve Fitting Toolbox 2-3
customizing time-series plots 5-16

D
data analysis

MATLAB GUIs for 1-4
of matrix data 1-4
plotting data 1-8
preparing data for 1-1
related toolboxes 1-5

data filtering, see filtering
data fitting 2-1

confidence bounds 2-34
example using functions 2-30
functions 2-22
multiple regression 2-28
nonpolynomial 2-26
polynomial 2-22
residuals 2-2

data statistics, see statistics

Data Statistics dialog box 1-28
generating an M-file 1-35 2-20
saving statistics 1-34
usage example 1-28

descriptive statistics 1-25
detrending data 1-20

in Time Series Tools 5-43
difference equations 1-15
discrete filter 1-17
discrete Fourier transform, see Fourier

transforms

E
editing time series 5-33
events in time series 5-33
exporting data

from MATLAB 1-7
from Time Series Tools 5-8

F
fast Fourier transform, see Fourier transforms
filter function 1-15
filtering

detrending data 1-20
difference equations 1-15
discrete filter 1-17
filter function 1-15
in Time Series Tools 5-43
moving average 1-16

finite differences 1-24
Fourier analysis 3-1

calculating sunspot periodicity 3-7
calculating the FFT 3-4
calculation performance 3-13
phase and magnitude 3-11

functions
for data fitting 2-22
for data statistics 1-25

Index-1

Index

for Fourier analysis 3-3

G
goodness of fit 2-2
GUIs

for data fitting 1-4
for plotting 1-4
for statistics 1-4
for time-series analysis 1-4

H
histogram 5-21

used to select data 5-21

I
importing data

into MATLAB 1-7
into Time Series Tools 5-8

interpolating missing data 1-12
define method for time series 5-36
in Time Series Tools 5-43

isnan function 1-11

L
linear regression 2-1
load function 1-8

M
M-code from Time Series Tools 5-6
magnitude of Fourier transform 3-11
maximum 1-25
mean 1-25
median 1-25
methods

for timeseries object 4-31
for tscollection object 4-39

minimum 1-25
missing data

in calculations 1-10
in time series 5-12
interpolating 1-10
removing 1-10
removing in Time Series Tools 5-43
representing by NaNs 1-10

mode 1-25
moving-average filter 1-16
multiple regression 2-28

N
NaNs

in calculations 1-10
removing from data 1-11

nonpolynomial fit 2-26

O
objects for time-series analysis 4-2
outliers

removing 1-13

P
periodogram 5-19

filtering data from 5-20
phase of Fourier transform 3-11
plot function 1-9
plotting data

in MATLAB 1-8
in Time Series Tools 5-14

polyfit function 2-22
polynomial regression 2-22
polyval function 2-22
properties

of timeseries object 4-24
of tscollection object 4-37

Property Editor

Index-2

Index

in Time Series Tools 5-16

Q
quality codes for time-series data 5-37

R
range 1-25
regression 2-1

multiple 2-28
nonpolynomial 2-26
polynomial 2-22

removing
missing data 1-11
NaNs 1-11
outliers 1-13

resampling
in Time Series Tools 5-43
tscollection object 4-14

residuals 2-2

S
Simulink logged signals 5-8
spectral plot 5-19

filtering data from 5-20
standard deviation 1-25
statistics

formatting on plots 1-32
functions 1-25
in Time Series Tools 5-43
MATLAB Data Statistics 1-28
removing NaNs 1-11
removing outliers 1-13
showing on plots 1-29

sunspot periodicity
calculating using Fourier transforms 3-7

T
time plot 5-18
Time Series Tools

customizing plots 5-16
define time-series units 5-33
defining data quality 5-37
defining events 5-39
defining interpolation method 5-36
detrending data 5-43
editing data 5-33
filtering data 5-43
generating M-code 5-6
getting help 5-3
Import Wizard 5-9
importing data 5-8
interpolating data 5-43
opening 5-2
plot Property Editor 5-16
plotting data 5-14
removing missing data 5-43
resampling data 5-43
selecting data 5-29
transforming data algebraically 5-43
usage example 5-44
viewing statistics 5-43
window 5-3
workflow 5-5

time vector
format 4-21
uniform 5-35

time-series analysis
autocorrelation 5-23
crosscorrelation 5-24
example using methods 4-6
example using Time Series Tools 5-44
methods 4-1
multivariate data 5-11
using Time Series Tools 5-1

timeseries object
constructor 4-22

Index-3

Index

creating 4-21
definition of data sample 4-3
methods 4-31
properties 4-24

tools
MATLAB Basic Fitting 2-8
MATLAB Data Statistics 1-28
Time Series Tools 5-1

transfer-function filter 1-17
tscollection object

constructor 4-36
creating 4-36
methods 4-39
properties 4-37

U
uniform time vector 5-35

V
variance 1-25

W
workflow

in Time Series Tools 5-5

X
XY plot 5-27

Index-4

	toc
	Preparing Data for Analysis
	Using MATLAB for Data Analysis
	Calculations on Vectors and Matrices
	MATLAB GUIs for Data Analysis
	Related Toolboxes

	Importing and Exporting Data
	Plotting Data
	Example — Loading and Plotting Data
	Loading the Data
	Plotting the Data

	Removing and Interpolating Missing Values
	Representing Missing Data Values
	Calculating with NaNs
	Removing NaNs from the Data
	Interpolating Missing Data

	Removing Outliers
	Filtering Data
	Filter Function
	Example 1 — Moving-Average Filter
	Example 2 — Discrete Filter

	Detrending Data
	Example — Removing Linear Trends from the Data
	Loading and Plotting Data
	Detrending Data and Plotting Results

	Finite Differences
	Descriptive Statistics
	Functions for Calculating Descriptive Statistics
	Example 1 — Calculating Maximum, Mean, and Standard Deviation
	Example 2 — Subtracting the Mean

	Example — Using MATLAB Data Statistics
	Calculating and Plotting Descriptive Statistics
	Formatting Data Statistics on Plots
	Saving Statistics to the MATLAB Workspace
	Generating an M-file

	Data Fitting Using Linear Regression
	Introduction
	Residuals and Goodness of Fit
	When to Use the Curve Fitting Toolbox

	Linear Correlation Analysis
	Covariance
	Correlation Coefficients

	Using MATLAB Basic Fitting
	What Is MATLAB Basic Fitting?
	Sorting Data to Improve Performance
	Opening MATLAB Basic Fitting
	Example — Using MATLAB Basic Fitting
	Loading and Plotting the Data
	Fitting the Data
	Viewing and Saving Fit Parameters
	Interpolating Using the Model
	Generating an M-file

	Data Fitting Using MATLAB Functions
	MATLAB Functions for Polynomial Models
	Linear Model with Nonpolynomial Terms
	Multiple Regression

	Example — Data Fitting Using MATLAB Functions
	Calculating Correlation Coefficients
	Fitting a Polynomial to the Data
	Plot and Calculate Confidence Bounds

	Fourier Analysis
	Introduction
	Function Summary
	Calculating Fourier Transforms
	Example — Calculating the FFT of a Column Vector

	Example — Using FFT to Calculate Sunspot Periodicity
	Magnitude and Phase of Transformed Data
	FFT Length Versus Performance

	Using Time-Series Objects and Methods
	Introduction
	Time-Series Data Sample
	Example — Using Time-Series Objects and Methods
	Creating timeseries Objects
	Viewing timeseries Objects
	Modifying timeseries Units and Interpolation Method
	Defining Events
	Creating tscollection Objects
	Resampling a tscollection Object
	Adding a Data Sample to a tscollection Object
	Removing and Interpolating Missing Data
	Removing Missing Data
	Interpolating Missing Data

	Removing a timeseries from a tscollection
	Changing a Numerical Time Vector to Date Strings
	Plotting tscollection Members

	timeseries Constructor
	Time Vector Format
	timeseries Constructor Syntax
	timeseries Properties

	timeseries Methods
	General Methods
	Data and Time Manipulation Methods
	Event Methods
	Arithmetic Operation Methods
	Statistical Methods

	tscollection Constructor
	tscollection Constructor Syntax
	tscollection Properties

	tscollection Methods
	General tscollection Methods
	Data and Time Manipulation Methods

	Using Time Series Tools
	Introduction
	Opening Time Series Tools
	Getting Help
	Time Series Tools Window
	Time Series Tools Workflow
	Generating Reusable M-Code

	Importing and Exporting Data
	Types of Data You Can Import
	How to Import Data
	Importing timeseries and tscollection objects
	Importing data from external files
	Using the Import Wizard

	Changes to Data Representation During Import
	Importing Multivariate Data
	Choosing How to Represent Multivariate Data
	Creating a Time-Series Collection

	Importing Data with Missing Values
	Exporting Data from Time Series Tools

	Plotting Time Series
	Types of Plots in Time Series Tools
	Creating a Plot
	Customizing Line and Marker Styles
	Editing Plot Appearance
	Time Plots
	Spectral Plots
	Filtering the Data

	Histograms
	Selecting Data
	Removing or Replacing Data with NaNs

	Correlation Plots
	Autocorrelation of a Time Series
	Crosscorrelation of Time Series
	Interpreting Correlation Plots

	XY Plots

	Selecting Data for Analysis
	Selecting Data Using Rules
	Selecting Data Graphically
	Selecting Data in a Rectangular Region
	Selecting Data in a Time Interval

	Excluding Data from Analysis

	Editing Data, Time, Attributes, and Events
	Displaying the Data Table
	Editing Data and Time
	Edit Time or Data Values
	Define a Uniform Time Vector
	Add Data Samples
	Delete Data Samples

	Defining Data Attributes
	Units and Interpolation Method
	Quality Codes

	Assigning Quality Codes to Data
	Defining Events

	Processing and Manipulating Time Series
	Example — Using MATLAB Time Series Tools
	Loading Data into the MATLAB Workspace
	Starting Time Series Tools
	Enabling M-Code Generation
	Importing Data into Time Series Tools
	Creating a Time Plot
	Resampling Time Series
	Resampling on a Uniform Time Vector
	Resampling by Finding a Common Time Vector

	Comparing Data on an XY Plot
	Viewing Generated M Code
	Exporting Time Series to the Workspace

	tables
	MATLAB GUIs for Data Analysis
	Toolboxes That Extend MATLAB Data Analysis
	Statistics Function Summary
	Polynomial Fit Functions
	FFT Function Summary
	tsc1 Data from 2.0 to 3.5 Hours
	New tsc1 Data from 2.0 to 3.5 Hours
	timeseries Syntax Descriptions
	timeseries Property Descriptions
	Methods for Querying Properties
	Methods for Manipulating Data and Time
	Methods That Define and Use Events
	Methods to Arithmetically Combine timeseries
	Methods for Calculating Descriptive Statistics
	tscollection Syntax Descriptions
	tscollection Property Descriptions
	Methods for Querying Properties
	Methods for Manipulating Data and Time
	Syntax for Loading Data from the MATLAB Workspace
	Time Plot Commands
	Data Analysis Commands

